Displaying 41 – 60 of 85

Showing per page

Spectral localization, power boundedness and invariant subspaces under Ritt's type condition

Yu. Lyubich (1999)

Studia Mathematica

For a bounded linear operator T in a Banach space the Ritt resolvent condition R λ ( T ) C / | λ - 1 | (|λ| > 1) can be extended (changing the constant C) to any sector |arg(λ - 1)| ≤ π - δ, a r c c o s ( C - 1 ) < δ < π / 2 . This implies the power boundedness of the operator T. A key result is that the spectrum σ(T) is contained in a special convex closed domain. A generalized Ritt condition leads to a similar localization result and then to a theorem on invariant subspaces.

Spectral mapping inclusions for the Phillips functional calculus in Banach spaces and algebras

Eva Fašangová, Pedro J. Miana (2005)

Studia Mathematica

We investigate the weak spectral mapping property (WSMP) μ ̂ ( σ ( A ) ) ¯ = σ ( μ ̂ ( A ) ) , where A is the generator of a ₀-semigroup in a Banach space X, μ is a measure, and μ̂(A) is defined by the Phillips functional calculus. We consider the special case when X is a Banach algebra and the operators e A t , t ≥ 0, are multipliers.

Spectral radius formula for commuting Hilbert space operators

Vladimír Muller, Andrzej Sołtysiak (1992)

Studia Mathematica

A formula is given for the (joint) spectral radius of an n-tuple of mutually commuting Hilbert space operators analogous to that for one operator. This gives a positive answer to a conjecture raised by J. W. Bunce in [1].

Spectral radius inequalities for positive commutators

Mirosława Zima (2014)

Czechoslovak Mathematical Journal

We establish several inequalities for the spectral radius of a positive commutator of positive operators in a Banach space ordered by a normal and generating cone. The main purpose of this paper is to show that in order to prove the quasi-nilpotency of the commutator we do not have to impose any compactness condition on the operators under consideration. In this way we give a partial answer to the open problem posed in the paper by J. Bračič, R. Drnovšek, Y. B. Farforovskaya, E. L. Rabkin, J. Zemánek...

Spectral radius of operators associated with dynamical systems in the spaces C(X)

Krzysztof Zajkowski (2005)

Banach Center Publications

We consider operators acting in the space C(X) (X is a compact topological space) of the form A u ( x ) = ( k = 1 N e φ k T α k ) u ( x ) = k = 1 N e φ k ( x ) u ( α k ( x ) ) , u ∈ C(X), where φ k C ( X ) and α k : X X are given continuous mappings (1 ≤ k ≤ N). A new formula on the logarithm of the spectral radius r(A) is obtained. The logarithm of r(A) is defined as a nonlinear functional λ depending on the vector of functions φ = ( φ k ) k = 1 N . We prove that l n ( r ( A ) ) = λ ( φ ) = m a x ν M e s k = 1 N X φ k d ν k - λ * ( ν ) , where Mes is the set of all probability vectors of measures ν = ( ν k ) k = 1 N on X × 1,..., N and λ* is some convex lower-semicontinuous functional on ( C N ( X ) ) * . In other...

Spectral radius of weighted composition operators in L p -spaces

Krzysztof Zajkowski (2010)

Studia Mathematica

We prove that for the spectral radius of a weighted composition operator a T α , acting in the space L p ( X , , μ ) , the following variational principle holds: l n r ( a T α ) = m a x ν M ¹ α , e X l n | a | d ν , where X is a Hausdorff compact space, α: X → X is a continuous mapping preserving a Borel measure μ with suppμ = X, M ¹ α , e is the set of all α-invariant ergodic probability measures on X, and a: X → ℝ is a continuous and -measurable function, where = n = 0 α - n ( ) . This considerably extends the range of validity of the above formula, which was previously known in the case...

Spectral sets

J. Koliha (1997)

Studia Mathematica

The paper studies spectral sets of elements of Banach algebras as the zeros of holomorphic functions and describes them in terms of existence of idempotents. A new decomposition theorem characterizing spectral sets is obtained for bounded linear operators.

Currently displaying 41 – 60 of 85