Displaying 61 – 80 of 85

Showing per page

Spectraloid operator polynomials, the approximate numerical range and an Eneström-Kakeya theorem in Hilbert space

Jan Swoboda, Harald K. Wimmer (2010)

Studia Mathematica

We study a class of operator polynomials in Hilbert space which are spectraloid in the sense that spectral radius and numerical radius coincide. The focus is on the spectrum in the boundary of the numerical range. As an application, the Eneström-Kakeya-Hurwitz theorem on zeros of real polynomials is generalized to Hilbert space.

Spectrum preserving linear mappings in Banach algebras

B. Aupetit, H. du T. Mouton (1994)

Studia Mathematica

Let A and B be two unitary Banach algebras. We study linear mappings from A into B which preserve the polynomially convex hull of the spectrum. In particular, we give conditions under which such surjective linear mappings are Jordan morphisms.

Stabilization of Schrödinger equation in exterior domains

Lassaad Aloui, Moez Khenissi (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We prove uniform local energy estimates of solutions to the damped Schrödinger equation in exterior domains under the hypothesis of the Exterior Geometric Control. These estimates are derived from the resolvent properties.

Standard Models of Abstract Intersection Theory for Operators in Hilbert Space

Grzegorz Banaszak, Yoichi Uetake (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

For an operator in a possibly infinite-dimensional Hilbert space of a certain class, we set down axioms of an abstract intersection theory, from which the Riemann hypothesis regarding the spectrum of that operator follows. In our previous paper (2011) we constructed a GNS (Gelfand-Naimark-Segal) model of abstract intersection theory. In this paper we propose another model, which we call a standard model of abstract intersection theory. We show that there is a standard model of abstract intersection...

Structures of left n-invertible operators and their applications

Caixing Gu (2015)

Studia Mathematica

We study left n-invertible operators introduced in two recent papers. We show how to construct a left n-inverse as a sum of a left inverse and a nilpotent operator. We provide refinements for results on products and tensor products of left n-invertible operators by Duggal and Müller (2013). Our study leads to improvements and different and often more direct proofs of results of Duggal and Müller (2013) and Sid Ahmed (2012). We make a conjecture about tensor products of left n-invertible operators...

Currently displaying 61 – 80 of 85