Die zweite Variation von Minimalflächen im ...p mit polygonalem Rand.
This paper presents an analysis of some class of bilinear systems that can be applied to biomedical modelling. It combines models that have been studied separately so far, taking into account both the phenomenon of gene amplification and multidrug chemotherapy in their different aspects. The mathematical description is given by an infinite dimensional state equation with a system matrix whose form allows decomposing the model into two interacting subsystems. While the first one, of a finite dimension,...
We consider a function , , minimizing the integral , , where , or some more general functional with the same behaviour; we prove the existence of second weak derivatives and .
Differential evolution algorithm combined with chaotic pattern search(DE-CPS) for global optimization is introduced to improve the performance of simple DE algorithm. Pattern search algorithm using chaotic variables instead of random variables is used to accelerate the convergence of solving the objective value. Experiments on 6 benchmark problems, including morbid Rosenbrock function, show that the novel hybrid algorithm is effective for nonlinear optimization problems in high dimensional space....
This paper addresses a new differential game problem with forward-backward doubly stochastic differential equations. There are two distinguishing features. One is that our game systems are initial coupled, rather than terminal coupled. The other is that the admissible control is required to be adapted to a subset of the information generated by the underlying Brownian motions. We establish a necessary condition and a sufficient condition for an equilibrium point of nonzero-sum games and a saddle...
The convex optimal control problem for a system described by the parabolic equation is considered. The form of the right derivative of an optimal solution with respect to the parameter is derived. The applications to an air quality control problem are discussed. Numerical result are provided.
We study integral functionals constrained to divergence-free vector fields in Lp on a thin domain, under standard p-growth and coercivity assumptions, 1 < p < ∞. We prove that as the thickness of the domain goes to zero, the Gamma-limit with respect to weak convergence in Lp is always given by the associated functional with convexified energy density wherever it is finite. Remarkably, this happens despite the fact that relaxation of nonconvex functionals subject to the limiting constraint...
We study integral functionals constrained to divergence-free vector fields in Lp on a thin domain, under standard p-growth and coercivity assumptions, 1 < p < ∞. We prove that as the thickness of the domain goes to zero, the Gamma-limit with respect to weak convergence in Lp is always given by the associated functional with convexified energy density wherever it is finite. Remarkably, this happens despite the fact that relaxation of nonconvex functionals subject to the limiting constraint...
A 3D-2D dimension reduction for −Δ1 is obtained. A power law approximation from −Δp as p → 1 in terms of Γ-convergence, duality and asymptotics for least gradient functions has also been provided.
The purpose of this note is to discuss the relationship among Rosenthal's modulus of uniform integrability, Young measures and DiPerna-Majda measures. In particular, we give an explicit characterization of this modulus and state a criterion of the uniform integrability in terms of these measures. Further, we show applications to Fatou's lemma.
A direct construction of a stabilizing hybrid feedback that is robust to general measurement error is given for a general nonlinear control system that is asymptotically controllable to a compact set.
In this paper, a new numerical method for solving the nonlinear constrained optimal control with quadratic performance index is presented. The method is based upon B-spline functions. The properties of B-spline functions are presented. The operational matrix of derivative () and integration matrix () are introduced. These matrices are utilized to reduce the solution of nonlinear constrained quadratic optimal control to the solution of nonlinear programming one to which existing well-developed...