Compactifications kähleriennes de voisinages ouverts de cycles géométriquement positifs
F. Campana (1990)
Annales scientifiques de l'École Normale Supérieure
R. Brooks, P. Petersen, P. Perry (1992)
Journal für die reine und angewandte Mathematik
Hebey, Emmanuel, Robert, Frédéric (2004)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Sun-Yung A. Chang, Paul C. Yang (1989)
Commentarii mathematici Helvetici
M. S. Santos (2017)
Commentationes Mathematicae Universitatis Carolinae
In this manuscript we provide new extensions for the Myers theorem in weighted Riemannian and Lorentzian manifolds. As application we obtain a closure theorem for spatial hypersurfaces immersed in some time-like manifolds.
Manlio Bordoni (2000)
Bulletin de la Société Mathématique de France
Thórdur Jónsson (1982)
Mathematica Scandinavica
J.-H. Eschenburg (1987)
Manuscripta mathematica
Min-Oo, Ernst A. Ruh (1979)
Annales scientifiques de l'École Normale Supérieure
E. Heintze, J.-H. Eschenburg (1990)
Manuscripta mathematica
Udo Simon (2015)
Colloquium Mathematicae
For complete gradient Ricci solitons we state necessary conditions for a non-trivial soliton structure in terms of intrinsic curvature invariants.
Su-Shing Chen (1975)
Commentarii mathematici Helvetici
Sai-Kee Yeung (1990)
Mathematische Zeitschrift
Amalendu Ghosh (2016)
Mathematica Bohemica
We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures with constant scalar curvature is either Einstein, or the dual field of is Killing. Next, let be a complete and connected Riemannian manifold of dimension at least admitting a pair of Einstein-Weyl structures . Then the Einstein-Weyl vector field (dual to the -form ) generates an infinitesimal harmonic transformation if and only if is Killing.
Schi Chang Shu (2008)
Archivum Mathematicum
In this paper, we characterize the -dimensional complete spacelike hypersurfaces in a de Sitter space with constant scalar curvature and with two distinct principal curvatures one of which is simple.We show that is a locus of moving -dimensional submanifold , along the principal curvature of multiplicity is constant and is umbilical in and is contained in an -dimensional sphere and is of constant curvature ,where is the arc length of an orthogonal trajectory of the family...
L.E. Jones, F.T. Farrell (1994)
Inventiones mathematicae
Frédéric Mouton (1995)
Commentarii mathematici Helvetici
Shigeo Kawai (1992)
Mathematische Annalen
Patricio Aviles (1986)
Inventiones mathematicae
Eugene D. Rodionov, Viktor V. Slavskii (2002)
Commentationes Mathematicae Universitatis Carolinae
In this paper we investigate one-dimensional sectional curvatures of Riemannian manifolds, conformal deformations of the Riemannian metrics and the structure of locally conformally homogeneous Riemannian manifolds. We prove that the nonnegativity of the one-dimensional sectional curvature of a homogeneous Riemannian space attracts nonnegativity of the Ricci curvature and we show that the inverse is incorrect with the help of the theorems O. Kowalski-S. Nikčevi'c [K-N], D. Alekseevsky-B. Kimelfeld...