An integral formula for non-Codazzi tensors
On résume les proprietés de l’invariant de Perelman, et en combinaison avec l’invariant de Yamabe on exprime certaines proprietés géométriques des variétés de dimension en fonction de . On décrit des exemples d’annulation de en dimension , où on trouve des liens entre l’effondrement et l’existence de métriques à courbure scalaire positive. On montre qu’une version d’atoroïdalité qu’on appelle atoroïdalité complète est détectée par sur les variétés de courbure négative ou nulle de dimension...
Le cadre de cet article est celui des groupes et des espaces hyperboliques de M. Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...