Displaying 501 – 520 of 575

Showing per page

Sur l'existence d'une infinité continue de structures asymptotiques sur 𝐇 2

Renata Grimaldi (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

It is shown the existence of an uncountable infinity of asymptotic structures (i.e. equivalence's classes of quasi-isometric riemannian metrics) on the conformal class of the hyperbolic plan 𝐇 2 .

Sur l'holonomie des variétés pseudo-riemanniennes de signature (2,2+n).

A. Ikemakhen (1999)

Publicacions Matemàtiques

In this paper, we determine a class of possible restricted holonomy groups for a non-irreducible indecomposable pseudoriemannian manifold with signature (2,2 + n). In particular, we deduce that which associated to symmetric spaces; and give some examples of such spaces. Finally, we construct some examples of metrics whose restricted holonomy groups are not closed.

Surfaces in 𝕊 3 and 3 via spinors

Bertrand Morel (2004/2005)

Séminaire de théorie spectrale et géométrie

We generalize the spinorial characterization of isometric immersions of surfaces in 3 given by T. Friedrich to surfaces in 𝕊 3 and 3 . The main argument is the interpretation of the energy-momentum tensor associated with a special spinor field as a second fundamental form. It turns out that such a characterization of isometric immersions in terms of a special section of the spinor bundle also holds in the case of hypersurfaces in the Euclidean 4 -space.

Currently displaying 501 – 520 of 575