Holomorphic foliations in certain holomorphically convex domains of
On démontre que l’holonomie est non triviale au voisinage d’un cycle évanouissant au moyen d’un critère d’Imanishi et on donne une démonstration non standard de ce dernier.
Dans le présent travail, nous obtenons plusieurs caractérisations de feuilles propres et de feuilles denses des feuilletages transversalement de codimension 1 de variétés indifféremment compactes et non compactes.Ces caractéristiques sont algébriques et concernent la structure des semi-groupes sécants d’homotopie et d’homologie que nous avons définis et utilisés ailleurs.Par l’intermédiaire de corollaires sur l’existence d’holonomie dans l’adhérence des feuilles exceptionnelles, nous en déduisons...
Dans cet article nous étudions les feuilletages, transversalement orientables, de codimension 1 et classe , , qui n’admettent aucune transversale fermée nulle-homotope. Si est l’inclusion de la feuille , l’application induite sur les groupes fondamentaux, et une antireprésentation d’holonomie de , alors cette condition est équivalente à la suivante :Résultats : Si est une variété dont le groupe fondamental contient un sous-groupe cyclique d’indice fini, et si est un feuilletage de...
Soit un germe en de 1-forme différentielle holomorphe, satisfaisant la condition d’intégrabilité et non dicritique, i.e. sur toute surface non intégrale de , on ne peut tracer, au voisinage de 0, qu’un nombre fini de germes de courbes analytiques , intégrales de , avec . Alors possède un germe d’hypersurface analytique intégrale.
We obtain a series of new integral formulae for a distribution of arbitrary codimension (and its orthogonal complement) given on a closed Riemannian manifold, which start from the formula by Walczak (1990) and generalize ones for foliations by several authors. For foliations on space forms our formulae reduce to the classical type formulae by Brito-Langevin-Rosenberg (1981) and Brito-Naveira (2000). The integral formulae involve the conullity tensor of a distribution, and certain components of the...
On montre ici que l’invariant de Godbillon-Vey, défini pour les feuilletages de classe et de codimension 1, est un invariant de -conjugaison.
On donne une construction géométrique d’invariants généralisant la classe de Maslov-Arnold d’une immersion lagrangienne dans un fibré cotangent et l’indice de Maslov-Arnold-Leray d’une immersion lagrangienne -orientée dans : la classe de Maslov-Arnold universelle d’un fibré symplectique et l’indice de Maslov-Arnold-Leray d’un fibré -symplectique, c’est-à-dire dont le groupe structural est le revêtement à feuillets de . Tout ceci relève d’une situation géométrique générale dans laquelle s’introduisent...