Loading [MathJax]/extensions/MathZoom.js
Displaying 621 –
640 of
2026
Dans la première partie, nous démontrons deux théorèmes concernant la géométrie et la composition des saturés des familles “bordantes” et “simplement bordantes”.Dans la deuxième et troisième partie, nous en déduisons à l’aide d’autres arguments de nombreuses propriétés de structure des feuilletages de codimension 1 des variétés compactes et non compactes.Ces propriétés sont relatives à l’holonomie de l’adhérence des feuilles propres et exceptionnelles, à la famille des ensembles minimaux, à la structure...
We give a description of Kähler manifolds equipped with an integrable subbundle of of rank () under the assumption that the line bundle is numerically trivial. This is a sort of foliated version of Bogomolov’s theorem concerning Kähler manifolds with trivial canonical class.
En résumé, on retiendra que seules les surfaces d’Inoue-Hirzebruch et les surfaces génériques admettent un feuilletage holomorphe. Sur les surfaces d’Inoue-Hirzebruch il existe exactement deux feuilletages et sur les surfaces génériques au plus un. Le lieu singulier de la réunion des courbes rationnelles coïncide avec le lieu singulier du feuilletage. Les courbes rationnelles sont des feuilles en dehors des points singuliers du feuilletage.
Nous nous intéressons aux propriétés transverses des feuilletages orientés des surfaces. En particulier, nous donnons des conditions équivalentes à l’existence d’une section globale, en étudiant les formes fermées transverses à l’aide de réseaux ferroviaires.
Nous étudions les feuilletages riemanniens sur les variétés simplement connexes d’un point de vue qualitatif. Nous montrons tout d’abord que ces feuilletages peuvent être approchés par des fibrations de Seifert généralisées. Nous montrons ensuite que, pour une certaine métrique quasi-fibrée, les feuilles de ces feuilletages sont des sous-variétés minimales. Comme application, nous montrons que les seuls feuilletages riemanniens qui ne sont pas des fibrés de seifert, sur les sphères et les espace...
Nous étudions les feuilletages lisses totalement géodésiques de codimension des
variétés lorentziennes. Nous nous intéressons notamment aux relations entre les flots
riemanniens et les feuilletages géodésiques. Nous prouvons que, quitte à prendre un
revêtement d’ordre , tout fibré de Seifert possède un tel feuilletage.
Dans cet article nous prouvons que si est une variété de dimension , munie d’un feuilletage de codimension 1, transversalement analytique et transversalement orientable, qui possède une transversale fermée qui coupe toutes les feuilles, alors si est abélien, les feuilles à holonomie non triviale sont fermées, en nombre fini et ont toutes des groupes (, inclusion d’une feuille dans ) isomorphes.
Currently displaying 621 –
640 of
2026