Intrinsic differentials in buckling theory-Cuspoids
These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present...
Let (with ) be vector fields of class in an open set , let be a -dimensional submanifold of and define where is the tangent space to at . Then we expect the following property, which is obvious in the special case when is an interior point (relative to ) of : If is a -density point (relative to ) of then all the iterated Lie brackets of order less or equal to
In this article, we formalize isometric differentiable functions on real normed space [17], and their properties.
We describe all compact spin Kähler manifolds of even complex dimension and positive scalar curvature with least possible first eigenvalue of the Dirac operator.
Soit une application analytique propre entre des ouverts de , soit un sous-ensemble analytique de et soit . On donne des conditions pour que soit de codimension 1 dans .
La catégorie des fibrés vectoriels sur les variétés linéaires par morceaux se plonge dans une catégorie des classes d’équivalence de faisceaux de modules sur les faisceaux de germes des fonctions lissables, et on construit les classes de Pontrjagin, vérifiant des axiomes habituels. Chaque variété possède un objet tangent dans cette catégorie, et est la classe totale de Pontrjagin associée à .
Dans cet article, on donne une démonstration explicite du théorème de M. Sebastiani, sur la liberté du module associé à un germe à singularité isolée, lorsque est quasi homogène.Il se distingue, dans ce cas, une base et les fonctions composantes d’un élément de sont produites par un algorithme dont on prouve la convergence avec le théorème des voisinages privilégiés de B. Malgrange.