Displaying 281 – 300 of 703

Showing per page

Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications

Jian Qiu, Maxim Zabzine (2011)

Archivum Mathematicum

These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present...

Involutivity degree of a distribution at superdensity points of its tangencies

Silvano Delladio (2021)

Archivum Mathematicum

Let Φ 1 , ... , Φ k + 1 (with k 1 ) be vector fields of class C k in an open set U N + m , let 𝕄 be a N -dimensional C k submanifold of U and define 𝕋 : = { z 𝕄 : Φ 1 ( z ) , ... , Φ k + 1 ( z ) T z 𝕄 } where T z 𝕄 is the tangent space to 𝕄 at z . Then we expect the following property, which is obvious in the special case when z 0 is an interior point (relative to 𝕄 ) of 𝕋 : If z 0 𝕄 is a ( N + k ) -density point (relative to 𝕄 ) of 𝕋 then all the iterated Lie brackets of order less or equal to k ...

La géométrie différentielle dans la catégorie P L

Howard Osborn (1973)

Annales de l'institut Fourier

La catégorie des fibrés vectoriels sur les variétés M linéaires par morceaux se plonge dans une catégorie des classes d’équivalence [ I ] de faisceaux I de modules sur les faisceaux A ( M ) de germes des fonctions lissables, et on construit les classes p ( [ I ] ) H 4 * ( M ; R ) de Pontrjagin, vérifiant des axiomes habituels. Chaque variété M possède un objet tangent [ ξ ( M ) ] dans cette catégorie, et p ( [ ξ ( M ) ] ) est la classe totale de Pontrjagin associée à M .

Le théorème de M. Sebastiani pour une singularité quasi-homogène isolée

Jean-Pierre Françoise (1979)

Annales de l'institut Fourier

Dans cet article, on donne une démonstration explicite du théorème de M. Sebastiani, sur la liberté du C { p } module G = Ω n / d P d Ω n - 2 associé à un germe à singularité isolée, lorsque P est quasi homogène.Il se distingue, dans ce cas, une base et les fonctions composantes d’un élément de G sont produites par un algorithme dont on prouve la convergence avec le théorème des voisinages privilégiés de B. Malgrange.

Currently displaying 281 – 300 of 703