Displaying 61 – 80 of 511

Showing per page

An hp-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel

Gupta Nupur, Nataraj Neela (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin...

An IMEX scheme for reaction-diffusion equations: application for a PEM fuel cell model

István Faragó, Ferenc Izsák, Tamás Szabó, Ákos Kriston (2013)

Open Mathematics

An implicit-explicit (IMEX) method is developed for the numerical solution of reaction-diffusion equations with pure Neumann boundary conditions. The corresponding method of lines scheme with finite differences is analyzed: explicit conditions are given for its convergence in the ‖·‖∞ norm. The results are applied to a model for determining the overpotential in a proton exchange membrane (PEM) fuel cell.

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time step size...

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time...

An operator-splitting Galerkin/SUPG finite element method for population balance equations : stability and convergence

Sashikumaar Ganesan (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation...

An operator-splitting Galerkin/SUPG finite element method for population balance equations : stability and convergence

Sashikumaar Ganesan (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in...

An unconditionally stable finite element scheme for anisotropic curve shortening flow

Klaus Deckelnick, Robert Nürnberg (2023)

Archivum Mathematicum

Based on a recent novel formulation of parametric anisotropic curve shortening flow, we analyse a fully discrete numerical method of this geometric evolution equation. The method uses piecewise linear finite elements in space and a backward Euler approximation in time. We establish existence and uniqueness of a discrete solution, as well as an unconditional stability property. Some numerical computations confirm the theoretical results and demonstrate the practicality of our method.

Analysis and numerical approximation of a parabolic-hyperbolic transmission problem

Boško Jovanović, Lubin Vulkov (2012)

Open Mathematics

In this paper we investigate a mixed parabolic-hyperbolic initial boundary value problem in two disconnected intervals with Robin-Dirichlet conjugation conditions. A finite difference scheme approximating this problem is proposed and analyzed. An estimate of the convergence rate is obtained.

Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems

Philippe Angot, Vít Dolejší, Miloslav Feistauer, Jiří Felcman (1998)

Applications of Mathematics

We present the convergence analysis of an efficient numerical method for the solution of an initial-boundary value problem for a scalar nonlinear conservation law equation with a diffusion term. Nonlinear convective terms are approximated with the aid of a monotone finite volume scheme considered over the finite volume barycentric mesh, whereas the diffusion term is discretized by piecewise linear nonconforming triangular finite elements. Under the assumption that the triangulations are of weakly...

Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system

Pierluigi Colli, Gianni Gilardi, Pavel Krejčí, Paolo Podio-Guidugli, Jürgen Sprekels (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development...

Analysis of gradient flow of a regularized Mumford-Shah functional for image segmentation and image inpainting

Xiaobing Feng, Andreas Prohl (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper studies the gradient flow of a regularized Mumford-Shah functional proposed by Ambrosio and Tortorelli (1990, 1992) for image segmentation, and adopted by Esedoglu and Shen (2002) for image inpainting. It is shown that the gradient flow with L 2 × L initial data possesses a global weak solution, and it has a unique global in time strong solution, which has at most finite number of point singularities in the space-time, when the initial data are in H 1 × H 1 L . A family of fully discrete approximation...

Analysis of gradient flow of a regularized Mumford-Shah functional for image segmentation and image inpainting

Xiaobing Feng, Andreas Prohl (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper studies the gradient flow of a regularized Mumford-Shah functional proposed by Ambrosio and Tortorelli (1990, 1992) for image segmentation, and adopted by Esedoglu and Shen (2002) for image inpainting. It is shown that the gradient flow with L2 x L∞ initial data possesses a global weak solution, and it has a unique global in time strong solution, which has at most finite number of point singularities in the space-time, when the initial data are in H1 x H1 ∩ L∞. A family of fully...

Analysis of lumped parameter models for blood flow simulations and their relation with 1D models

Vuk Milišić, Alfio Quarteroni (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that guarantee...

Analysis of lumped parameter models for blood flow simulations and their relation with 1D models

Vuk Milišić, Alfio Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that...

Analysis of total variation flow and its finite element approximations

Xiaobing Feng, Andreas Prohl (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter ε , and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since our...

Analysis of total variation flow and its finite element approximations

Xiaobing Feng, Andreas Prohl (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter ε, see (1.7)) and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since...

Currently displaying 61 – 80 of 511