Energies of -valued harmonic maps on polyhedra with tangent boundary conditions
We study the textures of smectic-A liquid crystals consisting in curved, but stricdy equidistant lamellae. Assuming translational symmetry, we can generate them from a single curve. The free energy is a non-trivial functional of it. We learn how to derive the equilibrium equation for this curve, when the texture is confined between two parallel plates, which exert a weak anchoring on the orientation of the lamellae, but do not interfere direcdy with their position. Finally, we describe an instability...
In this paper, a nonlinear problem corresponding to a simplified Oldroyd-B model without convective terms is considered. Assuming the domain to be a convex polygon, existence of a solution is proved for small relaxation times. Continuous piecewise linear finite elements together with a Galerkin Least Square (GLS) method are studied for solving this problem. Existence and a priori error estimates are established using a Newton-chord fixed point theorem, a posteriori error estimates are also derived....
In this paper, a nonlinear problem corresponding to a simplified Oldroyd-B model without convective terms is considered. Assuming the domain to be a convex polygon, existence of a solution is proved for small relaxation times. Continuous piecewise linear finite elements together with a Galerkin Least Square (GLS) method are studied for solving this problem. Existence and a priori error estimates are established using a Newton-chord fixed point theorem, a posteriori error estimates are also derived. An...
In the paper [13], we give the full system of equations modelling the motion of a fluid/viscoelastic solid system, and obtain a differential model similar to the so-called Oldroyd model for a viscoelastic fluid. Moreover, existence results in bounded domains are obtained. In this paper we extend the results in [13] to unbounded domains. The unique solvability of the system of equations is established locally in time and globally in time with so-called smallness restrictions. Moreover, existence...
We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided . To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.
This work is concerned with the study of the flow of an incompressible viscoelastic fluid of White-Metzner type. These models lead to systems of partial differential equations that are evolutionary, are globally well posed. The objective of this article is to prove the local and global existence of solutions of these systems.
A simplified stochastic Hookean dumbbells model arising from viscoelastic flows is considered, the convective terms being disregarded. A finite element discretization in space is proposed. Existence of the numerical solution is proved for small data, so as a priori error estimates, using an implicit function theorem and regularity results obtained in [Bonito et al., J. Evol. Equ.6 (2006) 381–398] for the solution of the continuous problem. A posteriori error estimates are also derived. Numerical...
We consider a system of degenerate parabolic equations modelling a thin film, consisting of two layers of immiscible Newtonian liquids, on a solid horizontal substrate. In addition, the model includes the presence of insoluble surfactants on both the free liquid-liquid and liquid-air interfaces, and the presence of both attractive and repulsive van der Waals forces in terms of the heights of the two layers. We show that this system formally satisfies a Lyapunov structure, and a second energy...
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ,d= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....
We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ , d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....