Representation theory of finite Abelian groups applied to a linear diatomic crystal.
This paper deals with the asymptotic behavior as of solutions to the forced Preisach oscillator equation , , where is a Preisach hysteresis operator, is a given function and is the time variable. We establish an explicit asymptotic relation between the Preisach measure and the function (or, in a more physical terminology, a balance condition between the hysteresis dissipation and the external forcing) which guarantees that every solution remains bounded for all times. Examples show...
This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...
This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher...
We perform a numerical study of the fluctuations of the rescaled hydrodynamic transverse velocity field during the cooling state of a homogeneous granular gas. We are interested in the role of Molecular Chaos for the amplitude of the hydrodynamic noise and its relaxation in time. For this purpose we compare the results of Molecular Dynamics (MD, deterministic dynamics) with those from Direct Simulation Monte Carlo (DSMC, random process), where Molecular...
In this paper, a new concept of the Reactivity Trace Curve (RTC) for reactor power control is presented. The concept is demonstrated for a reactor model with one group of delayed neutrons, where the reactivity trace curve is simply a closed form exponential solution of the RTC-differential equation identifier. An extended reactor model of multigroup (six groups) of delayed neutrons is discussed for power control using the RTC-method which is based on numerical solution of the governing equation...
We present an R&D project on fuzzy-logic control applicatios tor the Belgian Nuclear Reactor 1 (BR1) at the Belgian Nuclear Research Centre (SCK·CEN). The project started in 1995 and aimed at investigating the added value of fuzzy logic control for nuclear reactors. We first review some relevant literature on fuzzy logic control in nuclear reactors, then present the state-of-the-art of the BR1 project, with an understanding of the safety requirements for this real fuzzy-logic control application...
Attributing a positive value τx to each x∈ℤd, we investigate a nearest-neighbour random walk which is reversible for the measure with weights (τx), often known as “Bouchaud’s trap model.” We assume that these weights are independent, identically distributed and non-integrable random variables (with polynomial tail), and that d≥5. We obtain the quenched subdiffusive scaling limit of the model, the limit being the fractional kinetics process. We begin our proof by expressing the random walk as the...
We present here a simplified version of results obtained with F. Alouges, M. Dauge, B. Helffer and G. Vial (cf [4, 7, 9]). We analyze the Schrödinger operator with magnetic field in an infinite sector. This study allows to determine accurate approximation of the low-lying eigenpairs of the Schrödinger operator in domains with corners. We complete this analysis with numerical experiments.
We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus , the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument....
In this paper, we study the semiclassical limit of the cubic nonlinear Schrödinger equation with the Neumann boundary condition in an exterior domain. We prove that before the formation of singularities in the limit system, the quantum density and the quantum momentum converge to the unique solution of the compressible Euler equation with the slip boundary condition as the scaling parameter approaches
We revisit a hydrodynamical model, derived by Wong from Time-Dependent-Hartree-Fock approximation, to obtain a simplified version of nuclear matter. We obtain well-posed problems of Navier-Stokes-Poisson-Yukawa type, with some unusual features due to quantum aspects, for which one can prove local existence. In the case of a one-dimensional nuclear slab, we can prove a result of global existence, by using a formal analogy with some model of nonlinear "viscoelastic" rods.
The singularities occurring in any sort of ordering are known in physics as defects. In an organized fluid defects may occur both at microscopic (molecular) and at macroscopic scales when hydrodynamic ordered structures are developed. Such a fluid system serves as a model for the study of the evolution towards a strong disorder (chaos) and it is found that the singularities play an important role in the nature of the chaos. Moreover both types of defects become coupled at the onset of turbulence....
This work is concerned with asymptotic properties of multi-dimensional random walks in random environment. Under Kalikow’s condition, we show a central limit theorem for random walks in random environment on , when . We also derive tail estimates on the probability of slowdowns. These latter estimates are of special interest due to the natural interplay between slowdowns and the presence of traps in the medium. The tail behavior of the renewal time constructed in [25] plays an important role in...
We formulate some existence theorems for systems of elliptic equations with nonlocal terms. The proofs are based on the invariant region method. The results are applied to a multitemperature model of laser sustained plasma.