Displaying 61 – 80 of 98

Showing per page

Estimées pour les valuations p -adiques des valeurs propres des opérateurs de Hecke

Vincent Lafforgue (2011)

Bulletin de la Société Mathématique de France

Pour les formes automorphes cuspidales sur les corps de fonctions et pour les formes automorphes cuspidales cohomologiques sur les corps de nombres, on donne des estimées pour les valuations p -adiques des valeurs propres des opérateurs de Hecke. Dans le cas des corps de nombres, ces estimées correspondent aux estimées de Katz-Mazur par les conjectures de Langlands.

Euler system for Galois deformations

Tadashi Ochiai (2005)

Annales de l’institut Fourier

In this paper, we develop the Euler system theory for Galois deformations. By applying this theory to the Beilinson-Kato Euler system for Hida’s nearly ordinary modular deformations, we prove one of the inequalities predicted by the two-variable Iwasawa main conjecture. Our method of the proof of the Euler system theory is based on non-arithmetic specializations. This gives a new simplified proof of the inequality between the characteristic ideal of the Selmer group of a Galois deformation and the...

Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52

Ebénézer Ntienjem (2017)

Open Mathematics

The convolution sum, [...] ∑(l,m)∈N02αl+βm=nσ(l)σ(m), ( l , m ) 0 2 α l + β m = n σ ( l ) σ ( m ) , where αβ = 22, 44, 52, is evaluated for all natural numbers n. Modular forms are used to achieve these evaluations. Since the modular space of level 22 is contained in that of level 44, we almost completely use the basis elements of the modular space of level 44 to carry out the evaluation of the convolution sums for αβ = 22. We then use these convolution sums to determine formulae for the number of representations of a positive integer by...

Evaluation of the sums m = 1 m a ( mod 4 ) n - 1 σ ( m ) σ ( n - m )

Ayşe Alaca, Şaban Alaca, Kenneth S. Williams (2009)

Czechoslovak Mathematical Journal

The convolution sum m = 1 m a ( mod 4 ) n - 1 σ ( m ) σ ( n - m ) is evaluated for a { 0 , 1 , 2 , 3 } and all n . This completes the partial evaluation given in the paper of J. G. Huard, Z. M. Ou, B. K. Spearman, K. S. Williams.

Exceptional modular form of weight 4 on an exceptional domain contained in C27.

Henry H. Kim (1993)

Revista Matemática Iberoamericana

Resnikoff [12] proved that weights of a non trivial singular modular form should be integral multiples of 1/2, 1, 2, 4 for the Siegel, Hermitian, quaternion and exceptional cases, respectively. The θ-functions in the Siegel, Hermitian and quaternion cases provide examples of singular modular forms (Krieg [10]). Shimura [15] obtained a modular form of half-integral weight by analytically continuing an Eisenstein series. Bump and Bailey suggested the possibility of applying an analogue of Shimura's...

Currently displaying 61 – 80 of 98