Local Shimura Correspondence.
Let be a rational prime and a complete discrete valuation field with residue field of positive characteristic . When is finite, generalizing the theory of Deligne [1], we construct in [10] and [11] a theory of local -constants for representations, over a complete local ring with an algebraically closed residue field of characteristic , of the Weil group of . In this paper, we generalize the results in [10] and [11] to the case where is an arbitrary perfect field.
We prove the compatibility of the local and global Langlands correspondences at places dividing for the -adic Galois representations associated to regular algebraic conjugate self-dual cuspidal automorphic representations of over an imaginary CM field, under the assumption that the automorphic representations have Iwahori-fixed vectors at places dividing and have Shin-regular weight.
The -adic local Langlands correspondence for attaches to any -dimensional irreducible -adic representation of an admissible unitary representation of . The unitary principal series of are those corresponding to trianguline representations. In this article, for , using the machinery of Colmez, we determine the space of locally analytic vectors for all non-exceptional unitary principal series of by proving a conjecture of Emerton.
We prove formulas for the generating functions for -rank differences for partitions without repeated odd parts. These formulas are in terms of modular forms and generalized Lambert series.
Let and for and when for , we obtain an effective archimedean counting result for a discrete orbit of in a homogeneous space where is the trivial group, a symmetric subgroup or a horospherical subgroup. More precisely, we show that for any effectively well-rounded family of compact subsets, there exists such that for an explicit measure on which depends on . We also apply the affine sieve and describe the distribution of almost primes on orbits of in arithmetic settings....