On Hecke -functions associated with cusp forms. II: On the sign changes of .
Let , and be three distinct primitive holomorphic cusp forms of even integral weights , and for the full modular group , respectively, and let , and denote the th normalized Fourier coefficients of , and , respectively. We consider the cancellations of sums related to arithmetic functions , twisted by and establish the following results: for any , where , are any fixed positive integers.
H. P. F. Swinnerton-Dyer determined the structure of the ring of modular forms modulo p in the elliptic modular case. In this paper, the structure of the ring of Hilbert modular forms modulo p is studied. In the case where the discriminant of corresponding quadratic field is 8 (or 5), the explicit structure is determined.
Let be an odd prime and a fixed integer with . For each integer with , it is clear that there exists one and only one with such that (mod ). Let denote the number of all solutions of the congruence equation (mod ) for , in which and are of opposite parity, where is defined by the congruence equation . The main purpose of this paper is to use the properties of Dedekind sums and the mean value theorem for Dirichlet -functions to study the hybrid mean value problem involving...
For a fixed integer , and fixed we considerwhere is the error term in the above asymptotic formula. Hitherto the sharpest bounds for are derived in the range min . We also obtain new mean value results for the zeta-function of holomorphic cusp forms and the Rankin-Selberg series.