Regularity of distribution of (nα)-sequences
Johannes Schoissengeier (2008)
Acta Arithmetica
Chen Gong-Liang (1996)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Břetislav Novák (1974)
Commentationes Mathematicae Universitatis Carolinae
F. Beukers, K. Väänänen, T. Matala-Aho (1983)
Acta Arithmetica
Wolfgang Schwarz (1967)
Mathematica Scandinavica
P. Erdös, P. Szüsz, P. Turán (1958)
Colloquium Mathematicae
Jean Coquet (1977)
Acta Arithmetica
Annette Decomps-Guilloux (1965/1966)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Michel Olivier (1970/1971)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Michel Waldschmidt (1971)
Séminaire de théorie des nombres de Bordeaux
Charles Pisot (1946/1947)
Commentarii mathematici Helvetici
Georges Rhin (1972)
Jhon J. Bravo, Jose L. Herrera (2020)
Archivum Mathematicum
For an integer , let be the generalized Pell sequence which starts with ( terms) and each term afterwards is given by the linear recurrence . In this paper, we find all -generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence .
Refik Keskin, Faticko Erduvan (2021)
Mathematica Bohemica
The sequence of balancing numbers is defined by the recurrence relation for with initial conditions and is called the th balancing number. In this paper, we find all repdigits in the base which are sums of four balancing numbers. As a result of our theorem,...
D.J. Lewis, Jan Turk (1985)
Journal für die reine und angewandte Mathematik
K. Alniaçik (1990)
Acta Arithmetica
William D. Banks, Ahmet M. Güloğlu, C. Wesley Nevans (2007)
Acta Arithmetica
J.H. Silverman (1983)
Inventiones mathematicae
Péter Kiss (1991)
Mathematica Slovaca
Chinčin, A. Ja. (1952)