Displaying 501 – 520 of 1536

Showing per page

Further remarks on Diophantine quintuples

Mihai Cipu (2015)

Acta Arithmetica

A set of m positive integers with the property that the product of any two of them is the predecessor of a perfect square is called a Diophantine m-tuple. Much work has been done attempting to prove that there exist no Diophantine quintuples. In this paper we give stringent conditions that should be met by a putative Diophantine quintuple. Among others, we show that any Diophantine quintuple a,b,c,d,e with a < b < c < d < e s a t i s f i e s d < 1.55·1072 a n d b < 6.21·1035 w h e n 4 a < b , w h i l e f o r b < 4 a o n e h a s e i t h e r c = a + b + 2√(ab+1) and d < 1 . 96 · 10 53 ...

Fuzzy distances

Josef Bednář (2005)

Kybernetika

In the paper, three different ways of constructing distances between vaguely described objects are shown: a generalization of the classic distance between subsets of a metric space, distance between membership functions of fuzzy sets and a fuzzy metric introduced by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh’s extension principle, particularly to n are dealt with in detail.

Généralisation des critères pour l’indépendance linéaire de Nesterenko, Amoroso, Colmez, Fischler et Zudilin

Amarisa Chantanasiri (2012)

Annales mathématiques Blaise Pascal

Deux méthodes différentes permettent de démontrer un critère pour l’indépendance linéaire dû à Yu.V. Nesterenko. Nous développons d’abord la méthode initiale de Nesterenko, simplifiée par F. Amoroso et P. Colmez, pour obtenir des critères plus précis que ceux établis jusqu’à maintenant, valables pour des familles finies de nombres complexes ou d’éléments de p .Nous reprenons ensuite l’approche différente de Fischler et Zudilin que nous avions utilisée dans un article précédent, qui permet de travailler...

Currently displaying 501 – 520 of 1536