Généralisation d'un théorème de I. M. Vinogradov à un corps de séries formelles sur un corps fini
Soit une variété projective sur un corps de nombres (resp. sur ). Soit la somme de « suffisamment de diviseurs positifs » sur . On montre que tout ensemble de points quasi-entiers (resp. toute courbe entière) dans est non Zariski-dense.
We study a wide class of metrics in a Lebesgue space, namely the class of so-called admissible metrics. We consider the cone of admissible metrics, introduce a special norm in it, prove compactness criteria, define the ɛ-entropy of a measure space with an admissible metric, etc. These notions and related results are applied to the theory of transformations with invariant measure; namely, we study the asymptotic properties of orbits in the cone of admissible metrics with respect to a given transformation...