Displaying 661 – 680 of 1536

Showing per page

Linear independence of continued fractions

Jaroslav Hančl (2002)

Journal de théorie des nombres de Bordeaux

The main result of this paper is a criterion for linear independence of continued fractions over the rational numbers. The proof is based on their special properties.

Linear independence of linear forms in polylogarithms

Raffaele Marcovecchio (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

For x , | x | < 1 , s , let Li s ( x ) be the s -th polylogarithm of x . We prove that for any non-zero algebraic number α such that | α | < 1 , the ( α ) -vector space spanned by 1 , Li 1 ( α ) , Li 2 ( α ) , has infinite dimension. This result extends a previous one by Rivoal for rational α . The main tool is a method introduced by Fischler and Rivoal, which shows the coefficients of the polylogarithms in the relevant series to be the unique solution of a suitable Padé approximation problem.

Lucas balancing numbers

Kálmán Liptai (2006)

Acta Mathematica Universitatis Ostraviensis

A positive n is called a balancing number if 1 + 2 + + ( n - 1 ) = ( n + 1 ) + ( n + 2 ) + + ( n + r ) . We prove that there is no balancing number which is a term of the Lucas sequence.

Currently displaying 661 – 680 of 1536