Displaying 61 – 80 of 227

Showing per page

On inhomogeneous diophantine approximation with some quasi-periodic expressions, II

Takao Komatsu (1999)

Journal de théorie des nombres de Bordeaux

We consider the values concerning ( θ , φ ) = lim inf | q | | q | | | q θ - φ | | where the continued fraction expansion of θ has a quasi-periodic form. In particular, we treat the cases so that each quasi-periodic form includes no constant. Furthermore, we give some general conditions satisfying ( θ , φ ) = 0 .

On Kurzweil's 0-1 law in inhomogeneous Diophantine approximation

Michael Fuchs, Dong Han Kim (2016)

Acta Arithmetica

We give a necessary and sufficient condition such that, for almost all s ∈ ℝ, ||nθ - s|| < ψ(n) for infinitely many n ∈ ℕ, where θ is fixed and ψ(n) is a positive, non-increasing sequence. This can be seen as a dual result to classical theorems of Khintchine and Szüsz which dealt with the situation where s is fixed and θ is random. Moreover, our result contains several earlier ones as special cases: two old theorems of Kurzweil, a theorem of Tseng and a recent...

On metric theory of Diophantine approximation for complex numbers

Zhengyu Chen (2015)

Acta Arithmetica

In 1941, R. J. Duffin and A. C. Schaeffer conjectured that for the inequality |α - m/n| < ψ(n)/n with g.c.d.(m,n) = 1, there are infinitely many solutions in positive integers m and n for almost all α ∈ ℝ if and only if n = 2 ϕ ( n ) ψ ( n ) / n = . As one of partial results, in 1978, J. D. Vaaler proved this conjecture under the additional condition ψ ( n ) = ( n - 1 ) . In this paper, we discuss the metric theory of Diophantine approximation over the imaginary quadratic field ℚ(√d) with a square-free integer d < 0, and show that a Vaaler...

Currently displaying 61 – 80 of 227