Displaying 821 – 840 of 1538

Showing per page

On inhomogeneous diophantine approximation with some quasi-periodic expressions, II

Takao Komatsu (1999)

Journal de théorie des nombres de Bordeaux

We consider the values concerning ( θ , φ ) = lim inf | q | | q | | | q θ - φ | | where the continued fraction expansion of θ has a quasi-periodic form. In particular, we treat the cases so that each quasi-periodic form includes no constant. Furthermore, we give some general conditions satisfying ( θ , φ ) = 0 .

On Kurzweil's 0-1 law in inhomogeneous Diophantine approximation

Michael Fuchs, Dong Han Kim (2016)

Acta Arithmetica

We give a necessary and sufficient condition such that, for almost all s ∈ ℝ, ||nθ - s|| < ψ(n) for infinitely many n ∈ ℕ, where θ is fixed and ψ(n) is a positive, non-increasing sequence. This can be seen as a dual result to classical theorems of Khintchine and Szüsz which dealt with the situation where s is fixed and θ is random. Moreover, our result contains several earlier ones as special cases: two old theorems of Kurzweil, a theorem of Tseng and a recent...

Currently displaying 821 – 840 of 1538