On generalised arithmetic and geometric progressions
We obtain the values concerning using the algorithm by Nishioka, Shiokawa and Tamura. In application, we give the values (θ,1/2), (θ,1/a), (θ,1/√(ab(ab+4))) and so on when θ = (√(ab(ab+4)) - ab)/(2a) = [0;a,b,a,b,...].
We consider the values concerningwhere the continued fraction expansion of has a quasi-periodic form. In particular, we treat the cases so that each quasi-periodic form includes no constant. Furthermore, we give some general conditions satisfying .
We give a necessary and sufficient condition such that, for almost all s ∈ ℝ, ||nθ - s|| < ψ(n) for infinitely many n ∈ ℕ, where θ is fixed and ψ(n) is a positive, non-increasing sequence. This can be seen as a dual result to classical theorems of Khintchine and Szüsz which dealt with the situation where s is fixed and θ is random. Moreover, our result contains several earlier ones as special cases: two old theorems of Kurzweil, a theorem of Tseng and a recent...
Given a subsequence of a uniformly distributed sequence, relations between the asymptotic densities of sets of its indices and the Lebesgue measure of the set of all its limit points are studied.