On Some Relations which are Equivalent to Functional Equations Involving the Riemann Zeta Function.
The main purpose of this paper is to study the hybrid mean value of and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value of and Gauss sums will be proved using analytic methods and estimates for trigonometric sums.
In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Pacific J. Math., 1 (1951), 161–167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications.
We investigate the average behavior of the th normalized Fourier coefficients of the th ( be any fixed integer) symmetric power -function (i.e., ), attached to a primitive holomorphic cusp form of weight for the full modular group over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum where is sufficiently large, and When , the error term which we obtain improves the earlier known result.
The Brun-Titchmarsh theorem shows that the number of primes which are less than x and congruent to a modulo q is less than (C+o(1))x/(ϕ(q)logx) for some value C depending on logx/logq. Different authors have provided different estimates for C in different ranges for logx/logq, all of which give C>2 when logx/logq is bounded. We show that one can take C=2 provided that logx/logq ≥ 8 and q is sufficiently large. Moreover, we also produce a lower bound of size when logx/logq ≥ 8 and is bounded....