Displaying 101 – 120 of 232

Showing per page

On the 2 k -th power mean of L ' L ( 1 , χ ) with the weight of Gauss sums

Dongmei Ren, Yuan Yi (2009)

Czechoslovak Mathematical Journal

The main purpose of this paper is to study the hybrid mean value of L ' L ( 1 , χ ) and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value χ χ 0 | τ ( χ ) | | L ' L ( 1 , χ ) | 2 k of L ' L and Gauss sums will be proved using analytic methods and estimates for trigonometric sums.

On the apostol-bernoulli polynomials

Qiu-Ming Luo (2004)

Open Mathematics

In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Pacific J. Math., 1 (1951), 161–167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications.

On the average behavior of the Fourier coefficients of j th symmetric power L -function over certain sequences of positive integers

Anubhav Sharma, Ayyadurai Sankaranarayanan (2023)

Czechoslovak Mathematical Journal

We investigate the average behavior of the n th normalized Fourier coefficients of the j th ( j 2 be any fixed integer) symmetric power L -function (i.e., L ( s , sym j f ) ), attached to a primitive holomorphic cusp form f of weight k for the full modular group S L ( 2 , ) over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum S j * : = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 ) , where x is sufficiently large, and L ( s , sym j f ) : = n = 1 λ sym j f ( n ) n s . When j = 2 , the error term which we obtain improves the earlier known result.

On the Brun-Titchmarsh theorem

James Maynard (2013)

Acta Arithmetica

The Brun-Titchmarsh theorem shows that the number of primes which are less than x and congruent to a modulo q is less than (C+o(1))x/(ϕ(q)logx) for some value C depending on logx/logq. Different authors have provided different estimates for C in different ranges for logx/logq, all of which give C>2 when logx/logq is bounded. We show that one can take C=2 provided that logx/logq ≥ 8 and q is sufficiently large. Moreover, we also produce a lower bound of size x / ( q 1 / 2 ϕ ( q ) ) when logx/logq ≥ 8 and is bounded....

Currently displaying 101 – 120 of 232