Corrigendum to the paper "On a theorem of Bauer and some of its applications" (Acta Arithmetica 11 (1966), pp. 333-344)
Soit un corps de nombre galoisien non abélien sur dont le groupe de Galois possède un sous-groupe abélien distingué vérifiant les propriétés suivantes : l’ordre de est impair si son corps des invariants est un corps réel de degré strictement supérieur à 2, et l’application transfert qui lui est associée est l’application triviale. On montre que la décomposition d’un nombre premier dans une telle extension dépend de la représentation de ce nombre par certaines formes à coefficients entiers...
This paper is a continuation of [2]. We construct unconditionally several families of number fields with large class numbers. They are number fields whose Galois closures have as the Galois groups, dihedral groups , , and cyclic groups , . We first construct families of number fields with small regulators, and by using the strong Artin conjecture and applying some modification of zero density result of Kowalski-Michel, we choose subfamilies such that the corresponding -functions are zero free...
Based on a method of H. W. Lenstra Jr. in this note 143 new Euclidean number fields are given of degree and 10 and of unit rank . The search for these examples also revealed several other fields of small discriminant compared with the lower bounds of Odlyzko.
We present a density result for the norm of the fundamental unit in a real quadratic order that follows from an equidistribution assumption for the infinite Frobenius elements in the class groups of these orders.
In this article we compute fundamental units for a family of number fields generated by a parametric polynomial of degree 5 with signature and Galois group .