Displaying 241 – 260 of 453

Showing per page

On congruent primes and class numbers of imaginary quadratic fields

Nils Bruin, Brett Hemenway (2013)

Acta Arithmetica

We consider the problem of determining whether a given prime p is a congruent number. We present an easily computed criterion that allows us to conclude that certain primes for which congruency was previously undecided, are in fact not congruent. As a result, we get additional information on the possible sizes of Tate-Shafarevich groups of the associated elliptic curves. We also present a related criterion for primes p such that 16 divides the class number of the imaginary quadratic field ℚ(√-p)....

On D 5 -polynomials with integer coefficients

Yasuhiro Kishi (2009)

Annales mathématiques Blaise Pascal

We give a family of D 5 -polynomials with integer coefficients whose splitting fields over are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.

On non-abelian Stark-type conjectures

Andreas Nickel (2011)

Annales de l’institut Fourier

We introduce non-abelian generalizations of Brumer’s conjecture, the Brumer-Stark conjecture and the strong Brumer-Stark property attached to a Galois CM-extension of number fields. Moreover, we discuss how they are related to the equivariant Tamagawa number conjecture, the strong Stark conjecture and a non-abelian generalization of Rubin’s conjecture due to D. Burns.

Currently displaying 241 – 260 of 453