Sur la structure galoisienne du groupe des unités d’un corps abélien réel de type
Pour décrire la structure galoisienne à -isomorphisme près du quotient par du groupe des unités d’une extension abélienne absolue de groupe de Galois de type , on amorce la description des -modules de type fini libres sur dont le caractère est contenu dans la représentation d’augmentation. La classification est complète pour les modules de rang inférieur ou égal à 3 ; elle est appliquée à la description donnée par T. Kubota des unités d’un corps biquadratique non cyclique en fonction des...
Étant donnée une extension galoisienne de groupe de Galois diédral, on montre que l’anneau des entiers de est un -module isomorphe à l’ordre formé des éléments de qui transportent dans lui-même (ordre décrit explicitement suivant la ramification de l’extension . On a rattaché cette étude à la recherche, pour chaque ordre de dans contenant , d’invariants caractérisant à un isomorphisme près les modules sur , et qui permettent notamment un calcul du groupe des classes projectives...
For an algebraic number field k and a prime number p (if p = 2, we assume that μ4 ⊂ k), we study the maximal rank ρk of a free pro-p- extension of k. We give various interpretations of 1 + r2(k) - ρk. The first uses Iwasawa theory, the second uses the envelope of a module and the third is local-global. These expressions confirm that 1 + r2 - ρk is related to the torsion of a certain Iwasawa module, hence to the dualizing module of a certain Galois group (under Leopoldt's conjecture).
On considère dans cet article les pro--extensions maximales à ramification restreinte au-dessus de la -extension cyclotomique d’un corps de nombres. Leur groupe de Galois est étudié, d’abord à travers le rang de la partie -libre de leur abélianisé, puis par leurs nombres minimaux de générateurs et de relations. Pour cela, on utilise la théorie des corps de classes, et on reprend les éléments de l’étude par Koch des pro--extensions à ramification restreinte maximales, qui fonctionnent dans ce...