The Regulator Spectrum For Totally Real Cubic Fields.
Let H be a Krull monoid with class group G. Then every nonunit a ∈ H can be written as a finite product of atoms, say . The set (a) of all possible factorization lengths k is called the set of lengths of a. If G is finite, then there is a constant M ∈ ℕ such that all sets of lengths are almost arithmetical multiprogressions with bound M and with difference d ∈ Δ*(H), where Δ*(H) denotes the set of minimal distances of H. We show that max Δ*(H) ≤ maxexp(G)-2,(G)-1 and that equality holds if every...
We study the quadratic case of a conjecture made by Van der Geer and Schoof about the behaviour of certain functions which are defined over the group of Arakelov divisors of a number field. These functions correspond to the standard function for divisors of algebraic curves and we prove that they reach their maximum value for principal Arakelov divisors and nowhere else. Moreover, we consider a function , which is an analogue of exp defined on the class group, and we show it also assumes its...
Let F/E be a Galois extension of number fields with Galois group . In this paper, we give some expressions for the order of the Sylow p-subgroups of tame kernels of F and some of its subfields containing E, where p is an odd prime. As applications, we give some results about the order of the Sylow p-subgroups when F/E is a Galois extension of number fields with Galois group .
We determine explicitly the structure of the torsion group over the maximal abelian extension of and over the maximal -cyclotomic extensions of for the family of rational elliptic curves given by , where is an integer.
Let and be two different prime integers such that with , and a positive odd square-free integer relatively prime to and . In this paper we investigate the unit groups of number fields .