The non-abelian normal CM-fields of degree 36 with class number one
Herein we introduce the palindromic index as a device for studying ambiguous cycles of reduced ideals with no ambiguous ideal in the cycle.
Let be a complete discretely valued field with perfect residue field . Assuming upper bounds on the relation between period and index for WC-groups over , we deduce corresponding upper bounds on the relation between period and index for WC-groups over . Up to a constant depending only on the dimension of the torsor, we recover theorems of Lichtenbaum and Milne in a “duality free” context. Our techniques include the use of LLR models of torsors under abelian varieties with good reduction and...
Let α be a totally positive algebraic integer of degree d, i.e., all of its conjugates are positive real numbers. We study the set ₂ of the quantities . We first show that √2 is the smallest point of ₂. Then, we prove that there exists a number l such that ₂ is dense in (l,∞). Finally, using the method of auxiliary functions, we find the six smallest points of ₂ in (√2,l). The polynomials involved in the auxiliary function are found by a recursive algorithm.
Let be a pure cubic field, with , where is a cube-free integer. We will determine the reduced ideals of the order of which coincides with the maximal order of in the case where is square-free and .