Displaying 481 – 500 of 557

Showing per page

The Hilbert Scheme of Buchsbaum space curves

Jan O. Kleppe (2012)

Annales de l’institut Fourier

We consider the Hilbert scheme H ( d , g ) of space curves C with homogeneous ideal I ( C ) : = H * 0 ( C ) and Rao module M : = H * 1 ( C ) . By taking suitable generizations (deformations to a more general curve) C of C , we simplify the minimal free resolution of I ( C ) by e.g making consecutive free summands (ghost-terms) disappear in a free resolution of I ( C ) . Using this for Buchsbaum curves of diameter one ( M v 0 for only one v ), we establish a one-to-one correspondence between the set 𝒮 of irreducible components of H ( d , g ) that contain ( C ) and a set of minimal...

The Hilbert scheme of space curves of small diameter

Jan Oddvar Kleppe (2006)

Annales de l’institut Fourier

This paper studies space curves C of degree d and arithmetic genus g , with homogeneous ideal I and Rao module M = H * 1 ( I ˜ ) , whose main results deal with curves which satisfy 0 Ext R 2 ( M , M ) = 0 (e.g. of diameter, diam M 2 ). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, H ( d , g ) , at ( C ) under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of C turns out to be equivalent to the...

The linear syzygy graph of a monomial ideal and linear resolutions

Erfan Manouchehri, Ali Soleyman Jahan (2021)

Czechoslovak Mathematical Journal

For each squarefree monomial ideal I S = k [ x 1 , ... , x n ] , we associate a simple finite graph G I by using the first linear syzygies of I . The nodes of G I are the generators of I , and two vertices u i and u j are adjacent if there exist variables x , y such that x u i = y u j . In the cases, where G I is a cycle or a tree, we show that I has a linear resolution if and only if I has linear quotients and if and only if I is variable-decomposable. In addition, with the same assumption on G I , we characterize all squarefree monomial ideals with a...

The operation and * operation of Cohen-Macaulay bipartite graphs

Yulong Yang, Guangjun Zhu, Yijun Cui, Shiya Duan (2024)

Czechoslovak Mathematical Journal

Let G be a finite simple graph with the vertex set V and let I G be its edge ideal in the polynomial ring S = 𝕂 [ V ] . We compute the depth and the Castelnuovo-Mumford regularity of S / I G when G = G 1 G 2 or G = G 1 * G 2 is a graph obtained from Cohen-Macaulay bipartite graphs G 1 , G 2 by the operation or * operation, respectively.

The torsion theory and the Melkersson condition

Takeshi Yoshizawa (2020)

Czechoslovak Mathematical Journal

We consider a generalization of the notion of torsion theory, which is associated with a Serre subcategory over a commutative Noetherian ring. In 2008 Aghapournahr and Melkersson investigated the question of when local cohomology modules belong to a Serre subcategory of the module category. In their study, the notion of Melkersson condition was defined as a suitable condition in local cohomology theory. One of our purposes in this paper is to show how naturally the concept of Melkersson condition...

Currently displaying 481 – 500 of 557