Sur le morphisme de Barth
On démontre qu'une feuille transcendante d'un feuilletage analytique sur une surface fibrée doit intersecter toute courbe algébrique non invariante et non contenue dans une réunion de fibres de la fibration; comme application on montre qu'une équation différentielle algébrique qui possède une solution locale avec une singularité essentielle n'a pas de ramification mobile, ce qui généralise les théorèmes de Malmquist et Yosida.
L’espace de modules des faisceaux semi-stables de rang 2, de classes de Chern (0,3) sur le plan projectif est une variété projective irréductible et lisse de dimension 9. Dans , les points qui ne proviennent pas d’un faisceau localement libre constituent une hypersurface . Dans cet article, nous montrons que toute surface complété de rencontre la frontière , autrement dit qu’il n’existe pas de famille de fibrés vectoriels paramétrée par une surface complète de . La démonstration repose...
Soit une surface complexe réglée. Nous introduisons des métriques de volume fini sur dons les singularités sont paramétrisées par une structure parabolique sur le fibré . Nous généralisons alors un résultat de Burns-deBartolomeis et Le Brun, en montrant que l’existence de métriques kählériennes singulières, de volume fini, à courbure scalaire constante négative ou nulle sur est équivalente à une condition de polystabilité parabolique sur ; de plus ces métriques proviennent toutes de quotients...
We show that the moduli space of SUX (r, L) of rank r bundles of fixed determinant L on a smooth projective curve X is separably unirational.
We provide generalizations of the notions of Atiyah class and Kodaira-Spencer map to the case of framed sheaves. Moreover, we construct closed two-forms on the moduli spaces of framed sheaves on surfaces. As an application, we define a symplectic structure on the moduli spaces of framed sheaves on some birationally ruled surfaces.