Displaying 201 – 220 of 1712

Showing per page

Bivariant Chern classes for morphisms with nonsingular target varieties

Shoji Yokura (2005)

Open Mathematics

W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class-a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of embeddable analytic varieties with cellular morphisms. In general however, the problem of uniqueness is still unresolved. In this paper we show that for morphisms having nonsingular target varieties there...

Bornes pour la régularité de Castelnuovo-Mumford des schémas non lisses

Amadou Lamine Fall (2009)

Annales de l’institut Fourier

Nous montrons dans cet article des bornes pour la régularité de Castelnuovo-Mumford d’un schéma admettant des singularités, en fonction des degrés des équations définissant le schéma, de sa dimension et de la dimension de son lieu singulier. Dans le cas où les singularités sont isolées, nous améliorons la borne fournie par Chardin et Ulrich et dans le cas général, nous établissons une borne doublement exponentielle en la dimension du lieu singulier.

Bounds for Chern classes of semistable vector bundles on complex projective spaces

Wiera Dobrowolska (1993)

Colloquium Mathematicae

This work concerns bounds for Chern classes of holomorphic semistable and stable vector bundles on n . Non-negative polynomials in Chern classes are constructed for 4-vector bundles on 4 and a generalization of the presented method to r-bundles on n is given. At the end of this paper the construction of bundles from complete intersection is introduced to see how rough the estimates we obtain are.

Bridgeland-stable moduli spaces for K -trivial surfaces

Daniele Arcara, Aaron Bertram (2013)

Journal of the European Mathematical Society

We give a one-parameter family of Bridgeland stability conditions on the derived category of a smooth projective complex surface S and describe “wall-crossing behavior” for objects with the same invariants as 𝒪 C ( H ) when H generates Pic ( S ) and C H . If, in addition, S is a K 3 or Abelian surface, we use this description to construct a sequence of fine moduli spaces of Bridgeland-stable objects via Mukai flops and generalized elementary modifications of the universal coherent sheaf. We also discover a natural...

Calculating limits and colimits in pro-categories

Daniel C. Isaksen (2002)

Fundamenta Mathematicae

We present some constructions of limits and colimits in pro-categories. These are critical tools in several applications. In particular, certain technical arguments concerning strict pro-maps are essential for a theorem about étale homotopy types. We also correct some mistakes in the literature on this topic.

Canonical integral structures on the de Rham cohomology of curves

Bryden Cais (2009)

Annales de l’institut Fourier

For a smooth and proper curve X K over the fraction field K of a discrete valuation ring R , we explain (under very mild hypotheses) how to equip the de Rham cohomology H dR 1 ( X K / K ) with a canonical integral structure: i.e., an R -lattice which is functorial in finite (generically étale) K -morphisms of X K and which is preserved by the cup-product auto-duality on H dR 1 ( X K / K ) . Our construction of this lattice uses a certain class of normal proper models of X K and relative dualizing sheaves. We show that our lattice naturally...

Currently displaying 201 – 220 of 1712