The Fundamental Group of the Complement of a Union of Complex Hyperplanes.
We define a linear structure on Grothendieck’s arithmetic fundamental group of a scheme defined over a field of characteristic 0. It allows us to link the existence of sections of the Galois group to with the existence of a neutral fiber functor on the category which linearizes it. We apply the construction to affine curves and neutral fiber functors coming from a tangent vector at a rational point at infinity, in order to follow this rational point in the universal covering of the affine...
We study the behavior of the Horrocks-Mumford bundle FHM when restricted to a plane P2 ⊂ P4, looking for all possible minimal free resolutions for the restricted bundle. To each of the 6 resolutions (4 stable and 2 unstable) we find, we then associate a subvariety of the Grassmannian G(2,4) of planes in P4. We thus obtain a filtration of the Grassmannian, which we describe in the second part of this work.