Displaying 1561 – 1580 of 1712

Showing per page

Transformation de Fourier homogène

Gérard Laumon (2003)

Bulletin de la Société Mathématique de France

Dans leur démonstration de la correspondance de Drinfeld-Langlands, Frenkel, Gaitsgory et Vilonen utilisent la transformation de Fourier géométrique, ce qui les oblige à travailler soit avec les faisceaux -adiques en caractéristique p > 0 , soit avec les 𝒟 -Modules en caractéristique 0 . En fait, ils n’utilisent cette transformation de Fourier géométrique que pour des faisceaux homogènes pour lesquels on s’attend à avoir une transformation de Fourier sur . L’objet de cette note est de proposer une telle...

Transformation de Fourier-Deligne sur les groupes unipotents

Moussa Saibi (1996)

Annales de l'institut Fourier

Dans cet article on étudie la transformation de Fourier-Deligne sur les schémas en groupes commutatifs unipotents connexes définis sur un corps parfait. On rappelle la construction du dual de Serre d’un groupe commutatif unipotent connexe et on définit la notion de paire duale admissible de schémas en groupes commutatifs unipotents connexes sur un corps parfait. On définit alors la transformation de Fourier-Deligne pour ces paires duales et on dégage les propriétés élémentaires de ce foncteur :...

Transversal crystals of finite level

Bernard Le Stum, Adolfo Quirós (1997)

Annales de l'institut Fourier

We extend Ogus’notion of T -crystal and F -span to the context of Berthelot’s crystals of level m and we study the generalization of Ogus’theorem on the equivalence between T -crystals and F -spans of width less than p .

Travaux de Zink

William Messing (2005/2006)

Séminaire Bourbaki

The diverse Dieudonné theories have as their common goal the classification of formal groups and p -divisible groups. The most recent theory is Zink’s theory of displays. A display over a ring R is a finitely generated projective module over the ring of Witt vectors, W ( R ) , equipped with additional structures. Zink has shown that using this notion, more concrete than those previously defined, one can obtain a good theory and prove an equivalence theorem in great generality. I will give an overview of...

Twisted action of the symmetric group on the cohomology of a flag manifold

Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1996)

Banach Center Publications

Classes dual to Schubert cycles constitute a basis on the cohomology ring of the flag manifold F, self-adjoint up to indexation with respect to the intersection form. Here, we study the bilinear form (X,Y) :=〈X·Y, c(F)〉 where X,Y are cocycles, c(F) is the total Chern class of F and〈,〉 is the intersection form. This form is related to a twisted action of the symmetric group of the cohomology ring, and to the degenerate affine Hecke algebra. We give a distinguished basis for this form, which is a...

Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations

Andreas Höring (2014)

Annales de l’institut Fourier

Let X be a normal projective variety, and let A be an ample Cartier divisor on X . Suppose that X is not the projective space. We prove that the twisted cotangent sheaf Ω X A is generically nef with respect to the polarisation  A . As an application we prove a Kobayashi-Ochiai theorem for foliations: if T X is a foliation such that det i A , then i is at most the rank of .

Currently displaying 1561 – 1580 of 1712