Arakelov invariants of Riemann surfaces.
We prove an arithmetic analogue of Fujita’s approximation theorem in Arakelov geometry, conjectured by Moriwaki, by using measures associated to -filtrations.
Nous dressons un rapide panorama de résultats allant dans le sens de la conjecture suivante : l’intersection d’une sous-variété d’une variété semi-abélienne et de l’union de tous les sous-groupes algébriques de de codimension au moins n’est pas Zariski-dense dans dès que n’est pas contenue dans un sous-groupe algébrique strict de .
Nous établissons une version de la conjecture de Manin pour le plan projectif éclaté en trois points alignés, le corps de base étant un corps global de caractéristique positive.
Nous déduisons de la formule du conducteur, conjecturée par S. Bloch, celle de P. Deligne exprimant, dans le cas d'une singularité isolée, la dimension totale des cycles évanescents en fonction du nombre de Milnor. En particulier, la formule de Deligne est établie en dimension relative un; en appendice, on généralise cet énoncé au cas d'un lieu singulier propre.
In [22], the authors proved an explicit formula for the arithmetic intersection number on the Siegel moduli space of abelian surfaces, under some assumptions on the quartic CM field . These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus curves for use in cryptography. One of the main tools in the proof was a previous result of the authors [21] generalizing the singular moduli formula of Gross...
We develop a formalism of direct images for metrized vector bundles in the context of the non-archimedean Arakelov theory introduced in our joint work with S. Bloch. We prove a Riemann-Roch-Grothendieck theorem for this direct image.