Displaying 181 – 200 of 1550

Showing per page

Classes de Chern et classes de cycles en cohomologie rigide

Denis Petrequin (2003)

Bulletin de la Société Mathématique de France

Nous construisons dans cet article les classes de Chern et les classes de cycles en cohomologie rigide. Nous démontrons par la suite que ces constructions vérifient bien les propriétés attendues. La cohomologie rigide est donc une cohomologie de Weil.

Cohomology of integer matrices and local-global divisibility on the torus

Marco Illengo (2008)

Journal de Théorie des Nombres de Bordeaux

Let p 2 be a prime and let  G be a p -group of matrices in SL n ( ) , for some integer  n . In this paper we show that, when n < 3 ( p - 1 ) , a certain subgroup of the cohomology group H 1 ( G , 𝔽 p n ) is trivial. We also show that this statement can be false when n 3 ( p - 1 ) . Together with a result of Dvornicich and Zannier (see [2]), we obtain that any algebraic torus of dimension n < 3 ( p - 1 ) enjoys a local-global principle on divisibility by  p .

Cohomology of the boundary of Siegel modular varieties of degree two, with applications

J. William Hoffman, Steven H. Weintraub (2003)

Fundamenta Mathematicae

Let 𝓐₂(n) = Γ₂(n)∖𝔖₂ be the quotient of Siegel's space of degree 2 by the principal congruence subgroup of level n in Sp(4,ℤ). This is the moduli space of principally polarized abelian surfaces with a level n structure. Let 𝓐₂(n)* denote the Igusa compactification of this space, and ∂𝓐₂(n)* = 𝓐₂(n)* - 𝓐₂(n) its "boundary". This is a divisor with normal crossings. The main result of this paper is the determination of H(∂𝓐₂(n)*) as a module over the finite group Γ₂(1)/Γ₂(n). As an application...

Compactification de variétés de Siegel aux places de mauvaise réduction

Benoît Stroh (2010)

Bulletin de la Société Mathématique de France

Nous construisons des compactifications toroïdales arithmétiques du champ de modules des variétés abéliennes principalement polarisées munies d’une structure de niveau parahorique. Pour ce faire, nous étendons la méthode de Faltings et Chai [7] à un cas de mauvaise réduction. Le voisinage du bord des compactifications obtenues n’est pas lisse, mais a pour singularités celles des champs de modules de variétés abéliennes avec structure parahorique de genre plus petit. Nous sommes amenés à reprendre...

Compactification minimale et mauvaise réduction

Benoît Stroh (2010)

Annales de l’institut Fourier

Nous construisons la compactification minimale de certaines variétés modulaires de Siegel en leurs places de mauvaise réduction. Ces variétés paramètrent des schémas abéliens principalement polarisés munis d’une structure de niveau parahorique en un nombre premier  p et d’une structure de niveau auxilliaire  ; elles ont mauvaise réduction en p . Nous esquissons également une théorie arithmétique des formes modulaires de Siegel associées à ces variétés.

Currently displaying 181 – 200 of 1550