Previous Page 3

Displaying 41 – 47 of 47

Showing per page

Multiple Bernoulli series, an Euler-MacLaurin formula, and Wall crossings

Arzu Boysal, Michèle Vergne (2012)

Annales de l’institut Fourier

We study multiple Bernoulli series associated to a sequence of vectors generating a lattice in a vector space. The associated multiple Bernoulli series is a periodic and locally polynomial function, and we give an explicit formula (called wall crossing formula) comparing the polynomial densities in two adjacent domains of polynomiality separated by a hyperplane. We also present a formula in the spirit of Euler-MacLaurin formula. Finally, we give a decomposition formula for the Bernoulli series describing...

Multiple zeta values and periods of moduli spaces 𝔐 ¯ 0 , n

Francis C. S. Brown (2009)

Annales scientifiques de l'École Normale Supérieure

We prove a conjecture due to Goncharov and Manin which states that the periods of the moduli spaces 𝔐 0 , n of Riemann spheres with n marked points are multiple zeta values. We do this by introducing a differential algebra of multiple polylogarithms on 𝔐 0 , n and proving that it is closed under the operation of taking primitives. The main idea is to apply a version of Stokes’ formula iteratively to reduce each period integral to multiple zeta values. We also give a geometric interpretation of the double shuffle...

Currently displaying 41 – 47 of 47

Previous Page 3