Displaying 21 – 40 of 47

Showing per page

Modular embeddings and rigidity for Fuchsian groups

Robert A. Kucharczyk (2015)

Acta Arithmetica

We prove a rigidity theorem for semiarithmetic Fuchsian groups: If Γ₁, Γ₂ are two semiarithmetic lattices in PSL(2,ℝ ) virtually admitting modular embeddings, and f: Γ₁ → Γ₂ is a group isomorphism that respects the notion of congruence subgroups, then f is induced by an inner automorphism of PGL(2,ℝ ).

Modularity of a nonrigid Calabi-Yau manifold with bad reduction at 13

Grzegorz Kapustka, Michał Kapustka (2007)

Annales Polonici Mathematici

We identify the weight four newform of a modular Calabi-Yau manifold studied by Hulek and Verrill. The main obstacle is that this Calabi-Yau manifold is not rigid and has bad reduction at prime 13. Replacing the original fiber product of elliptic fibrations with a fiberwise Kummer construction we reduce the problem to studying the modularity of a rigid Calabi-Yau manifold with good reduction at primes p ≥ 5.

Currently displaying 21 – 40 of 47