Nets, -sequences, and algebraic curves over finite fields with many rational points.
The aim of this article is to present five new examples of modular rigid Calabi-Yau threefolds by giving explicit correspondences to newforms of weight 4 and levels 10, 17, 21 and 73.
Inspired by Manin’s approach towards a geometric interpretation of Arakelov theory at infinity, we interpret in this paper non-Archimedean local intersection numbers of linear cycles in with the combinatorial geometry of the Bruhat-Tits building associated to .
Jordan, Rotger and de Vera-Piquero proved that Shimura curves have no points rational over imaginary quadratic fields under a certain assumption. In this article, we extend their results to the case of number fields of higher degree. We also give counterexamples to the Hasse principle on Shimura curves.