Displaying 1421 – 1440 of 1551

Showing per page

Un exemple de feuilletage modulaire déduit d’une solution algébrique de l’équation de Painlevé VI

Gaël Cousin (2014)

Annales de l’institut Fourier

On peut construire facilement des exemples de connexions plates de rang 2 sur 2 comme tirés en arrière de connexions sur 1 . On donne un exemple de connexion qui ne peut être obtenue de cette manière. Cet exemple est construit à partir d’une solution algébrique de l’équation de Painlevé VI. On en déduit un feuilletage modulaire. La preuve de ce fait repose sur la classification des feuilletages sur les surfaces projectives par leurs dimensions de Kodaira, fruit du travail de Brunella, McQuillan et...

Une construction de

Pierre Colmez (2012)

Rendiconti del Seminario Matematico della Università di Padova

Uniformisation des variétés de Laumon-Rapoport-Stuhler et conjecture de Drinfeld-Carayol

Thomas Hausberger (2005)

Annales de l’institut Fourier

Considérons les variétés de “ D -faisceaux elliptiques” introduites par Laumon, Rapoport et Stuhler, définies sur un corps de fonctions F d’une variable sur un corps fini, où D est une algèbre de division de dimension d 2 sur F . Nous montrons que ces variétés admettent, en une place o de F D o est un corps gauche d’invariant 1 / d , une uniformisation rigide-analytique par l’espace de Drinfeld Ω d , ou par les revêtements Σ n d de Ω d (selon la structure de niveau). Ce résultat constitue l’analogue du théorème...

Uniformization of certain Shimura curves

Pilar Bayer (2002)

Banach Center Publications

We present an approach to the uniformization of certain Shimura curves by means of automorphic functions, obtained by integration of non-linear differential equations. The method takes as its starting point a differential construction of the modular j-function, first worked out by R. Dedekind in 1877, and makes use of a differential operator of the third order, introduced by H. A. Schwarz in 1873.

Currently displaying 1421 – 1440 of 1551