Displaying 121 – 140 of 260

Showing per page

Matrix rank and inertia formulas in the analysis of general linear models

Yongge Tian (2017)

Open Mathematics

Matrix mathematics provides a powerful tool set for addressing statistical problems, in particular, the theory of matrix ranks and inertias has been developed as effective methodology of simplifying various complicated matrix expressions, and establishing equalities and inequalities occurred in statistical analysis. This paper describes how to establish exact formulas for calculating ranks and inertias of covariances of predictors and estimators of parameter spaces in general linear models (GLMs),...

Mixed-type reverse order law and its equivalents

Nebojša Č. Dinčić, Dragan S. Djordjević, Dijana Mosić (2011)

Studia Mathematica

We present new results related to various equivalents of the mixed-type reverse order law for the Moore-Penrose inverse for operators on Hilbert spaces. Recent finite-dimensional results of Tian are extended to Hilbert space operators.

Moore-Penrose inverse of a hollow symmetric matrix and a predistance matrix

Hiroshi Kurata, Ravindra B. Bapat (2016)

Special Matrices

By a hollow symmetric matrix we mean a symmetric matrix with zero diagonal elements. The notion contains those of predistance matrix and Euclidean distance matrix as its special cases. By a centered symmetric matrix we mean a symmetric matrix with zero row (and hence column) sums. There is a one-toone correspondence between the classes of hollow symmetric matrices and centered symmetric matrices, and thus with any hollow symmetric matrix D we may associate a centered symmetric matrix B, and vice...

Moore-Penrose inverses of Gram operators on Hilbert C*-modules

M. S. Moslehian, K. Sharif, M. Forough, M. Chakoshi (2012)

Studia Mathematica

Let t be a regular operator between Hilbert C*-modules and t be its Moore-Penrose inverse. We investigate the Moore-Penrose invertibility of the Gram operator t*t. More precisely, we study some conditions ensuring that t = ( t * t ) t * = t * ( t t * ) and ( t * t ) = t t * . As an application, we get some results for densely defined closed operators on Hilbert C*-modules over C*-algebras of compact operators.

Nested matrices and inverse M -matrices

Jeffrey L. Stuart (2015)

Czechoslovak Mathematical Journal

Given a sequence of real or complex numbers, we construct a sequence of nested, symmetric matrices. We determine the L U - and Q R -factorizations, the determinant and the principal minors for such a matrix. When the sequence is real, positive and strictly increasing, the matrices are strictly positive, inverse M -matrices with symmetric, irreducible, tridiagonal inverses.

New results for EP matrices in indefinite inner product spaces

Ivana M. Radojević (2014)

Czechoslovak Mathematical Journal

In this paper we study J -EP matrices, as a generalization of EP-matrices in indefinite inner product spaces, with respect to indefinite matrix product. We give some properties concerning EP and J -EP matrices and find connection between them. Also, we present some results for reverse order law for Moore-Penrose inverse in indefinite setting. Finally, we deal with the star partial ordering and improve some results given in the “EP matrices in indefinite inner product spaces” (2012), by relaxing some...

Noncirculant Toeplitz matrices all of whose powers are Toeplitz

Kent Griffin, Jeffrey L. Stuart, Michael J. Tsatsomeros (2008)

Czechoslovak Mathematical Journal

Let a , b and c be fixed complex numbers. Let M n ( a , b , c ) be the n × n Toeplitz matrix all of whose entries above the diagonal are a , all of whose entries below the diagonal are b , and all of whose entries on the diagonal are c . For 1 k n , each k × k principal minor of M n ( a , b , c ) has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of M n ( a , b , c ) . We also show that all complex polynomials in M n ( a , b , c ) are Toeplitz matrices. In particular, the inverse of M n ( a , b , c ) is a Toeplitz matrix when...

Nonsingularity, positive definiteness, and positive invertibility under fixed-point data rounding

Jiří Rohn (2007)

Applications of Mathematics

For a real square matrix A and an integer d 0 , let A ( d ) denote the matrix formed from A by rounding off all its coefficients to d decimal places. The main problem handled in this paper is the following: assuming that A ( d ) has some property, under what additional condition(s) can we be sure that the original matrix A possesses the same property? Three properties are investigated: nonsingularity, positive definiteness, and positive invertibility. In all three cases it is shown that there exists a real number...

Currently displaying 121 – 140 of 260