Linear dependence of zeros of polynomials and construction of primitve elements.
The Linear Discriminant Analysis (LDA) technique is an important and well-developed area of classification, and to date many linear (and also nonlinear) discrimination methods have been put forward. A complication in applying LDA to real data occurs when the number of features exceeds that of observations. In this case, the covariance estimates do not have full rank, and thus cannot be inverted. There are a number of ways to deal with this problem. In this paper, we propose improving LDA in this...
Let and be vector spaces over the same field . Following the terminology of Richard Arens [Pacific J. Math. 11 (1961), 9–23], a relation of into is called linear if and for all and . After improving and supplementing some former results on linear relations, we show that a relation of a linearly independent subset of into can be extended to a linear relation of into if and only if there exists a linear subspace of such that for all . Moreover, if generates...
We work in set-theory without choice ZF. Given a commutative field , we consider the statement : “On every non null -vector space there exists a non-null linear form.” We investigate various statements which are equivalent to in ZF. Denoting by the two-element field, we deduce that implies the axiom of choice for pairs. We also deduce that implies the axiom of choice for linearly ordered sets isomorphic with .
Let be a complex Hilbert space, a positive operator with closed range in and the sub-algebra of of all -self-adjoint operators. Assume onto itself is a linear continuous map. This paper shows that if preserves -unitary operators such that then defined by is a homomorphism or an anti-homomorphism and for all , where and is the Moore-Penrose inverse of . A similar result is also true if preserves -quasi-unitary operators in both directions such that there exists an...
Let X and Y be Banach spaces and ℬ(X) and ℬ(Y) the algebras of all bounded linear operators on X and Y, respectively. We say that A,B ∈ ℬ(X) quasi-commute if there exists a nonzero scalar ω such that AB = ωBA. We characterize bijective linear maps ϕ : ℬ(X) → ℬ(Y) preserving quasi-commutativity. In fact, such a characterization can be proved for much more general algebras. In the finite-dimensional case the same result can be obtained without the bijectivity assumption.
The set of all Boolean matrices is denoted by . We call a matrix regular if there is a matrix such that . In this paper, we study the problem of characterizing linear operators on that strongly preserve regular matrices. Consequently, we obtain that if , then all operators on strongly preserve regular matrices, and if , then an operator on strongly preserves regular matrices if and only if there are invertible matrices and such that for all , or and for all .
The maximal column rank of an m by n matrix is the maximal number of the columns of A which are linearly independent. We compare the maximal column rank with rank of matrices over a nonbinary Boolean algebra. We also characterize the linear operators which preserve the maximal column ranks of matrices over nonbinary Boolean algebra.
The Boolean rank of a nonzero Boolean matrix is the minimum number such that there exist an Boolean matrix and a Boolean matrix such that . In the previous research L. B. Beasley and N. J. Pullman obtained that a linear operator preserves Boolean rank if and only if it preserves Boolean ranks and . In this paper we extend this characterizations of linear operators that preserve the Boolean ranks of Boolean matrices. That is, we obtain that a linear operator preserves Boolean rank...
Let be a Boolean matrix. The isolation number of is the maximum number of ones in such that no two are in any row or any column (that is they are independent), and no two are in a submatrix of all ones. The isolation number of is a lower bound on the Boolean rank of . A linear operator on the set of Boolean matrices is a mapping which is additive and maps the zero matrix, , to itself. A mapping strongly preserves a set, , if it maps the set into the set and the complement of...
Let be an matrix of zeros and ones. The matrix is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero -entry. We characterize all linear maps perserving the set of Ferrers vectors over the binary Boolean semiring and over the Boolean ring . Also, we have achieved the number of these linear maps in each case.
Let , be matrices. The concept of matrix majorization means the th column of is majorized by the th column of and this is done for all by a doubly stochastic matrix . We define rc-majorization that extended matrix majorization to columns and rows of matrices. Also, the linear preservers of rc-majorization will be characterized.