Displaying 41 – 60 of 5576

Showing per page

A class of functions containing polyharmonic functions in ℝⁿ

V. Anandam, M. Damlakhi (2003)

Annales Polonici Mathematici

Some properties of the functions of the form v ( x ) = i = 0 m | x | i h i ( x ) in ℝⁿ, n ≥ 2, where each h i is a harmonic function defined outside a compact set, are obtained using the harmonic measures.

A class of maximal plurisubharmonic functions

Azimbay Sadullaev (2012)

Annales Polonici Mathematici

We consider a class of maximal plurisubharmonic functions and prove several properties of it. We also give a condition of maximality for unbounded plurisubharmonic functions in terms of the Monge-Ampère operator ( d d c e u ) .

A class of non-algebraic threefolds

Matei Toma (1989)

Annales de l'institut Fourier

Let X be a compact complex nonsingular surface without curves, and E a holomorphic vector bundle of rank 2 on X . It turns out that the associated projective bundle P E has no divisors if and only if E is “strongly” irreducible. Using the results concerning irreducible bundles of [Banica-Le Potier, J. Crelle, 378 (1987), 1-31] and [Elencwajg- Forster, Annales Inst. Fourier, 32-4 (1982), 25-51] we give a proof of existence for bundles which are strongly irreducible.

A class of non-rational surface singularities with bijective Nash map

Camille Plénat, Patrick Popescu-Pampu (2006)

Bulletin de la Société Mathématique de France

Let ( 𝒮 , 0 ) be a germ of complex analytic normal surface. On its minimal resolution, we consider the reduced exceptional divisor E and its irreducible components E i , i I . The Nash map associates to each irreducible component C k of the space of arcs through 0 on 𝒮 the unique component of E cut by the strict transform of the generic arc in C k . Nash proved its injectivity and asked if it was bijective. As a particular case of our main theorem, we prove that this is the case if E · E i < 0 for any  i I .

A cohomological Steinness criterion for holomorphically spreadable complex spaces

Viorel Vâjâitu (2010)

Czechoslovak Mathematical Journal

Let X be a complex space of dimension n , not necessarily reduced, whose cohomology groups H 1 ( X , 𝒪 ) , ... , H n - 1 ( X , 𝒪 ) are of finite dimension (as complex vector spaces). We show that X is Stein (resp., 1 -convex) if, and only if, X is holomorphically spreadable (resp., X is holomorphically spreadable at infinity). This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for 1 -convexity.

A combinatorial approach to singularities of normal surfaces

Sandro Manfredini (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we study generic coverings of 2 branched over a curve s.t. the total space is a normal analytic surface, in terms of a graph representing the monodromy of the covering, called monodromy graph. A complete description of the monodromy graphs and of the local fundamental groups is found in case the branch curve is { x n = y m } (with n m ) and the degree of the cover is equal to n or n - 1 .

A compactification of ( * ) 4 with no non-constant meromorphic functions

Jun-Muk Hwang, Dror Varolin (2002)

Annales de l’institut Fourier

For each 2-dimensional complex torus T , we construct a compact complex manifold X ( T ) with a 2 -action, which compactifies ( * ) 4 such that the quotient of ( * ) 4 by the 2 -action is biholomorphic to T . For a general T , we show that X ( T ) has no non-constant meromorphic functions.

A comparative analysis of Bernstein type estimates for the derivative of multivariate polynomials

Szilárd Gy. Révész (2006)

Annales Polonici Mathematici

We compare the yields of two methods to obtain Bernstein type pointwise estimates for the derivative of a multivariate polynomial in a domain where the polynomial is assumed to have sup norm at most 1. One method, due to Sarantopoulos, relies on inscribing ellipses in a convex domain K. The other, pluripotential-theoretic approach, mainly due to Baran, works for even more general sets, and uses the pluricomplex Green function (the Zaharjuta-Siciak extremal function). When the inscribed ellipse method...

A constant in pluripotential theory

Zbigniew Błocki (1992)

Annales Polonici Mathematici

We compute the constant sup ( 1 / d e g P ) ( m a x S l o g | P | - S l o g | P | d σ ) : P a polynomial in n , where S denotes the euclidean unit sphere in n and σ its unitary surface measure.

Currently displaying 41 – 60 of 5576