Displaying 181 – 200 of 259

Showing per page

Strict plurisubharmonicity of Bergman kernels on generalized annuli

Yanyan Wang (2014)

Annales Polonici Mathematici

Let A ζ = Ω - ρ ( ζ ) · Ω ¯ be a family of generalized annuli over a domain U. We show that the logarithm of the Bergman kernel K ζ ( z ) of A ζ is plurisubharmonic provided ρ ∈ PSH(U). It is remarkable that A ζ is non-pseudoconvex when the dimension of A ζ is larger than one. For standard annuli in ℂ, we obtain an interesting formula for ² l o g K ζ / ζ ζ ̅ , as well as its boundary behavior.

Su alcune formule integrali per le funzioni di più variabili complesse

Guido Lupacciolu (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

General topological conditions are given for integration cycles of a certain class of integral formulas for holomorphic functions of several complex variables.

Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains

Bo Berndtsson (2006)

Annales de l’institut Fourier

Let D be a pseudoconvex domain in t k × z n and let φ be a plurisubharmonic function in D . For each t we consider the n -dimensional slice of D , D t = { z ; ( t , z ) D } , let φ t be the restriction of φ to D t and denote by K t ( z , ζ ) the Bergman kernel of D t with the weight function φ t . Generalizing a recent result of Maitani and Yamaguchi (corresponding to n = 1 and φ = 0 ) we prove that log K t ( z , z ) is a plurisubharmonic function in D . We also generalize an earlier results of Yamaguchi concerning the Robin function and discuss similar results in the setting...

The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials

Tomasz Beberok (2017)

Czechoslovak Mathematical Journal

We investigate the Bergman kernel function for the intersection of two complex ellipsoids { ( z , w 1 , w 2 ) n + 2 : | z 1 | 2 + + | z n | 2 + | w 1 | q < 1 , | z 1 | 2 + + | z n | 2 + | w 2 | r < 1 } . We also compute the kernel function for { ( z 1 , w 1 , w 2 ) 3 : | z 1 | 2 / n + | w 1 | q < 1 , | z 1 | 2 / n + | w 2 | r < 1 } and show deflation type identity between these two domains. Moreover in the case that q = r = 2 we express the Bergman kernel in terms of the Jacobi polynomials. The explicit formulas of the Bergman kernel function for these domains enables us to investigate whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng problem.

The Bergman kernel functions of certain unbounded domains

Friedrich Haslinger (1998)

Annales Polonici Mathematici

We compute the Bergman kernel functions of the unbounded domains Ω p = ( z ' , z ) ² : z > p ( z ' ) , where p ( z ' ) = | z ' | α / α . It is also shown that these kernel functions have no zeros in Ω p . We use a method from harmonic analysis to reduce the computation of the 2-dimensional case to the problem of finding the kernel function of a weighted space of entire functions in one complex variable.

The Bergman kernel of the minimal ball and applications

Karl Oeljeklaus, Peter Pflug, El Hassan Youssfi (1997)

Annales de l'institut Fourier

In this note we compute the Bergman kernel of the unit ball with respect to the smallest norm in n that extends the euclidean norm in n and give some applications.

The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains

Hyeseon Kim, Atsushi Yamamori (2018)

Czechoslovak Mathematical Journal

We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.

The null space of the ¯ -Neumann operator

Lars Hörmander (2004)

Annales de l’institut Fourier

Let Ω be a complex analytic manifold of dimension n with a hermitian metric and C boundary, and let = ¯ ¯ * + ¯ * ¯ be the self-adjoint ¯ -Neumann operator on the space L 0 , q 2 ( Ω ) of forms of type ( 0 , q ) . If the Levi form of Ω has everywhere at least n - q positive or at least q + 1 negative eigenvalues, it is well known that Ker has finite dimension and that the range of is the orthogonal complement. In...

Currently displaying 181 – 200 of 259