C*-actions.
Soit un opérateur pseudodifférentiel (ou microdifférentiel) tel que soit aussi un opérateur pseudodifférentiel. Alors le symbole de s’ecrit avec un symbole . Pour la réciproque, si est un opérateur à symbole , il existe un opérateur tel que . Tous ces résultats reposent sur la théorie développée dans la Note I de cette série. Comme application, on obtient une condition suffisante d’inversibilité pour les opérateurs pseudodifférentiels d’ordre infini.
Cet article s’intéresse au calcul symbolique des opérateurs microdifférentiels avec symboles exponentiels. On donne la loi de composition des symboles exponentiels. Comme application, on trouve une condition suffisante d’ellipticité pour les opérateurs microdifférentiels d’ordre infini.
Dans cet article, nous étudions les zéros des fonctions holomorphes dans le bidisque dont le logarithme du module vérifie une condition de croissance : nous caractérisons par une condition de type Blaschke les zéros des fonctions vérifiantpour , et nous donnons les conditions suffisantes pour des classes plus petites, en particulier pour la classe de Nevanlinna du bidisque.
For algebraic surfaces, several global Phragmén-Lindelöf conditions are characterized in terms of conditions on their limit varieties. This shows that the hyperbolicity conditions that appeared in earlier geometric characterizations are redundant. The result is applied to the problem of existence of a continuous linear right inverse for constant coefficient partial differential operators in three variables in Beurling classes of ultradifferentiable functions.
We define directional Robin constants associated to a compact subset of an algebraic curve. We show that these constants satisfy an upper envelope formula given by polynomials. We use this formula to relate the directional Robin constants of the set to its directional Chebyshev constants. These constants can be used to characterize algebraic curves on which the Siciak-Zaharjuta extremal function is harmonic.
Étant donnée une variété kählérienne compacte , on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type . Lorsque est projective, les traces de ces cônes sur l’espace de Néron–Severi engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.
On a finite intersection of strictly pseudoconvex domains we define two kinds of natural Nevanlinna classes in order to take the growth of the functions near the sides or the edges into account. We give a sufficient Blaschke type condition on an analytic set for being the zero set of a function in a given Nevanlinna class. On the other hand we show that the usual Blaschke condition is not necessary here.
A semi-algebraic analytic manifold and a semi-algebraic analytic map are called a Nash manifold and a Nash map respectively. We clarify the category of Nash manifolds and Nash maps.