Displaying 141 – 160 of 403

Showing per page

Geometry of universal embedding spaces for almost complex manifolds

Gabriella Clemente (2024)

Archivum Mathematicum

We investigate the geometry of universal embedding spaces for compact almost-complex manifolds of a given dimension, and related constructions that allow for an extrinsic study of the integrability of almost-complex structures. These embedding spaces were introduced by J-P. Demailly and H. Gaussier, and are complex algebraic analogues of twistor spaces. Their goal was to study a conjecture made by F. Bogomolov asserting the “transverse embeddability” of arbitrary compact complex manifolds into foliated...

Global boundary regularity for the p a r t i a l ¯ -equation on q -pseudo-convex domains

Heungju Ahn (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For a bounded domain D of C n , we introduce a notion of « q -pseudoconvexity» of new type and prove that for a given ¯ -closed p , r -form f that is smooth up to the boundary on D , and for r q , there exists a p , r - 1 -form u smooth up to the boundary on D which is a solution of the equation ¯ u = f

Harder-Narasimhan filtrations and optimal destabilizing vectors in complex geometry

Laurent Bruasse, Andrei Teleman (2005)

Annales de l’institut Fourier

We give here a generalization of the theory of optimal destabilizing 1-parameter subgroups to non algebraic complex geometry : we consider holomorphic actions of a complex reductive Lie group on a finite dimensional (possibly non compact) Kähler manifold. In a second part we show how these results may extend in the gauge theoretical framework and we discuss the relation between the Harder-Narasimhan filtration and the optimal detstabilizing vectors of a non semistable object....

Harmonic maps and representations of non-uniform lattices of PU ( m , 1 )

Vincent Koziarz, Julien Maubon (2008)

Annales de l’institut Fourier

We study representations of lattices of PU ( m , 1 ) into PU ( n , 1 ) . We show that if a representation is reductive and if m is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic m -space to complex hyperbolic n -space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into PU ( n , 1 ) of non-uniform lattices in PU ( 1 , 1 ) , and more generally of fundamental groups of orientable...

Hermitian curvature flow

Jeffrey Streets, Gang Tian (2011)

Journal of the European Mathematical Society

We define a functional for Hermitian metrics using the curvature of the Chern connection. The Euler–Lagrange equation for this functional is an elliptic equation for Hermitian metrics. Solutions to this equation are related to Kähler–Einstein metrics, and are automatically Kähler–Einstein under certain conditions. Given this, a natural parabolic flow equation arises. We prove short time existence and regularity results for this flow, as well as stability for the flow near Kähler–Einstein metrics...

Hölder continuous solutions to Monge–Ampère equations

Jean-Pierre Demailly, Sławomir Dinew, Vincent Guedj, Pham Hoang Hiep, Sławomir Kołodziej, Ahmed Zeriahi (2014)

Journal of the European Mathematical Society

Let ( X , ω ) be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on X with L p right hand side, p > 1 . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range ( X , ω ) of the complex Monge-Ampère operator acting on ω -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with L p -density belong to ( X , ω ) and proving that ( X , ω ) has the...

Holomorphic line bundles and divisors on a domain of a Stein manifold

Makoto Abe (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let D be an open set of a Stein manifold X of dimension n such that H k ( D , 𝒪 ) = 0 for 2 k n - 1 . We prove that D is Stein if and only if every topologically trivial holomorphic line bundle L on D is associated to some Cartier divisor 𝔡 on D .

Holomorphic Poisson Cohomology

Zhuo Chen, Daniele Grandini, Yat-Sun Poon (2015)

Complex Manifolds

Holomorphic Poisson structures arise naturally in the realm of generalized geometry. A holomorphic Poisson structure induces a deformation of the complex structure in a generalized sense, whose cohomology is obtained by twisting the Dolbeault @-operator by the holomorphic Poisson bivector field. Therefore, the cohomology space naturally appears as the limit of a spectral sequence of a double complex. The first sheet of this spectral sequence is simply the Dolbeault cohomology with coefficients in...

Currently displaying 141 – 160 of 403