Displaying 221 – 240 of 591

Showing per page

Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates

The Anh Bui, Jun Cao, Luong Dang Ky, Dachun Yang, Sibei Yang (2013)

Analysis and Geometry in Metric Spaces

Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order...

On a probabilistic interpretation of shape derivatives of Dirichlet groundstates with application to Fermion nodes

Mathias Rousset (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper considers Schrödinger operators, and presents a probabilistic interpretation of the variation (or shape derivative) of the Dirichlet groundstate energy when the associated domain is perturbed. This interpretation relies on the distribution on the boundary of a stopped random process with Feynman-Kac weights. Practical computations require in addition the explicit approximation of the normal derivative of the groundstate on the boundary. We then propose to use this formulation in the...

On Bernoulli decomposition of random variables and recent various applications

François Germinet (2007/2008)

Séminaire Équations aux dérivées partielles

In this review, we first recall a recent Bernoulli decomposition of any given non trivial real random variable. While our main motivation is a proof of universal occurence of Anderson localization in continuum random Schrödinger operators, we review other applications like Sperner theory of antichains, anticoncentration bounds of some functions of random variables, as well as singularity of random matrices.

On Dirichlet-Schrödinger operators with strong potentials

Gabriele Grillo (1995)

Studia Mathematica

We consider Schrödinger operators H = -Δ/2 + V (V≥0 and locally bounded) with Dirichlet boundary conditions, on any open and connected subdomain D n which either is bounded or satisfies the condition d ( x , D c ) 0 as |x| → ∞. We prove exponential decay at the boundary of all the eigenfunctions of H whenever V diverges sufficiently fast at the boundary ∂D, in the sense that d ( x , D C ) 2 V ( x ) as d ( x , D C ) 0 . We also prove bounds from above and below for Tr(exp[-tH]), and in particular we give criterions for the finiteness of such trace....

On elliptic systems pertaining to the Schrödinger equation

J. Chabrowski, E. Tonkes (2003)

Annales Polonici Mathematici

We discuss the existence of solutions for a system of elliptic equations involving a coupling nonlinearity containing a critical and subcritical Sobolev exponent. We establish the existence of ground state solutions. The concentration of solutions is also established as a parameter λ becomes large.

Currently displaying 221 – 240 of 591