The search session has expired. Please query the service again.

Displaying 441 – 460 of 591

Showing per page

The equation - Δ 𝑢 - λ 𝑢 | 𝑥 | 2 = | 𝑢 | 𝑝 + 𝑐 𝑓 ( 𝑥 ) : The optimal power

Boumediene Abdellaoui, Ireneo Peral (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We will consider the following problem - Δ u - λ u | x | 2 = | u | p + c f , u > 0 in Ω , where Ω N is a domain such that 0 Ω , N 3 , c > 0 and λ > 0 . The main objective of this note is to study the precise threshold p + = p + ( λ ) for which there is novery weak supersolutionif p p + ( λ ) . The optimality of p + ( λ ) is also proved by showing the solvability of the Dirichlet problem when 1 p < p + ( λ ) , for c > 0 small enough and f 0 under some hypotheses that we will prescribe.

The form boundedness criterion for the relativistic Schrödinger operator

Vladimir Maz'ya, Igor Verbitsky (2004)

Annales de l’institut Fourier

We establish necessary and sufficient conditions on the real- or complex-valued potential Q defined on n for the relativistic Schrödinger operator - Δ + Q to be bounded as an operator from the Sobolev space W 2 1 / 2 ( n ) to its dual W 2 - 1 / 2 ( n ) .

The gaps in the spectrum of the Schrödinger operator

Haizhong Li, Linlin Su (2005)

Banach Center Publications

We obtain inequalities between the eigenvalues of the Schrödinger operator on a compact domain Ω of a submanifold M in R N with boundary ∂Ω, which generalize many existing inequalities for the Laplacian on a bounded domain of a Euclidean space. We also establish similar inequalities for a closed minimal submanifold in the unit sphere, which generalize and improve Yang-Yau’s result.

The mixed regularity of electronic wave functions multiplied by explicit correlation factors

Harry Yserentant (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics 2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...

The mixed regularity of electronic wave functions multiplied by explicit correlation factors***

Harry Yserentant (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...

The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave packet approach

François Castella (2004)

Journées Équations aux dérivées partielles

We consider the high-frequency Helmholtz equation with a given source term, and a small absorption parameter α > 0 . The high-frequency (or: semi-classical) parameter is ε > 0 . We let ε and α go to zero simultaneously. We assume that the zero energy is non-trapping for the underlying classical flow. We also assume that the classical trajectories starting from the origin satisfy a transversality condition, a generic assumption.Under these assumptions, we prove that the solution u ε radiates in the outgoing...

The resolution of the bounded L 2 curvature conjecture in general relativity

Sergiu Klainerman, Igor Rodnianski, Jérémie Szeftel (2014/2015)

Séminaire Laurent Schwartz — EDP et applications

This paper reports on the recent proof of the bounded L 2 curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the L 2 -norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.

The Schrödinger equation on a compact manifold : Strichartz estimates and applications

Nicolas Burq, Patrick Gérard, Nikolay Tzvetkov (2001)

Journées équations aux dérivées partielles

We prove Strichartz estimates with fractional loss of derivatives for the Schrödinger equation on any riemannian compact manifold. As a consequence we infer global existence results for the Cauchy problem of nonlinear Schrödinger equations on surfaces in the case of defocusing polynomial nonlinearities, and on three-manifolds in the case of quadratic nonlinearities. We also discuss the optimality of these Strichartz estimates on spheres.

Currently displaying 441 – 460 of 591