On the scattering theory of the Laplacian with a periodic boundary condition. II. Additional channels of scattering.
We consider Schrödinger operators with dynamically defined potentials arising from continuous sampling along orbits of strictly ergodic transformations. The Gap Labeling Theorem states that the possible gaps in the spectrum can be canonically labelled by an at most countable set defined purely in terms of the dynamics. Which labels actually appear depends on the choice of the sampling function; the missing labels are said to correspond to collapsed gaps. Here we show that for any collapsed gap,...
We study the potential which minimizes the fundamental gap of the Schrödinger operator under the total mass constraint. We consider the relaxed potential and prove a regularity result for the optimal one, we also give a description of it. A consequence of this result is the existence of an optimal potential under L1 constraints.
We consider the Schrödinger operator on , where is a given domain of . Our goal is to study some optimization problems where an optimal potential has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.