Displaying 21 – 40 of 69

Showing per page

Faisceaux d'espaces de Sobolev et principes du minimum

Denis Feyel, A. de La Pradelle (1975)

Annales de l'institut Fourier

On montre que le faisceau des sursolutions locales dans W loc 2 d’un certain opérateur elliptique L est maximal pour un principe du minimum adapté aux espaces de Sobolev. La continuité de la réduite variationnelle des éléments continus permet alors d’étudier des représentants s.c.i.

Nonlinear fourth order problems with asymptotically linear nonlinearities

Abir Amor Ben Ali, Makkia Dammak (2024)

Mathematica Bohemica

We investigate some nonlinear elliptic problems of the form Δ 2 v + σ ( x ) v = h ( x , v ) in Ω , v = Δ v = 0 on Ω , ( P ) where Ω is a regular bounded domain in N , N 2 , σ ( x ) a positive function in L ( Ω ) , and the nonlinearity h ( x , t ) is indefinite. We prove the existence of solutions to the problem (P) when the function h ( x , t ) is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.

On the regularity of local minimizers of decomposable variational integrals on domains in 2

Michael Bildhauer, Martin Fuchs (2007)

Commentationes Mathematicae Universitatis Carolinae

We consider local minimizers u : 2 Ω N of variational integrals like Ω [ ( 1 + | 1 u | 2 ) p / 2 + ( 1 + | 2 u | 2 ) q / 2 ] d x or its degenerate variant Ω [ | 1 u | p + | 2 u | q ] d x with exponents 2 p < q < which do not fall completely in the category studied in Bildhauer M., Fuchs M., Calc. Var. 16 (2003), 177–186. We prove interior C 1 , α - respectively C 1 -regularity of u under the condition that q < 2 p . For decomposable variational integrals of arbitrary order a similar result is established by the way extending the work Bildhauer M., Fuchs M., Ann. Acad. Sci. Fenn. Math. 31 (2006), 349–362.

Currently displaying 21 – 40 of 69