Displaying 2081 – 2100 of 5493

Showing per page

Integrability for solutions to quasilinear elliptic systems

Francesco Leonetti, Pier Vincenzo Petricca (2010)

Commentationes Mathematicae Universitatis Carolinae

In this paper we prove an estimate for the measure of superlevel sets of weak solutions to quasilinear elliptic systems in divergence form. In some special cases, such an estimate allows us to improve on the integrability of the solution.

Integrability for vector-valued minimizers of some variational integrals

Francesco Leonetti, Francesco Siepe (2001)

Commentationes Mathematicae Universitatis Carolinae

We prove that the higher integrability of the data f , f 0 improves on the integrability of minimizers u of functionals , whose model is Ω | D u | p + ( det ( D u ) ) 2 - f , D u + f 0 , u d x , where u : Ω n n and p 2 .

Integrability for very weak solutions to boundary value problems of p -harmonic equation

Hongya Gao, Shuang Liang, Yi Cui (2016)

Czechoslovak Mathematical Journal

The paper deals with very weak solutions u θ + W 0 1 , r ( Ω ) , max { 1 , p - 1 } < r < p < n , to boundary value problems of the p -harmonic equation - div ( | u ( x ) | p - 2 u ( x ) ) = 0 , x Ω , u ( x ) = θ ( x ) , x Ω . ( * ) We show that, under the assumption θ W 1 , q ( Ω ) , q > r , any very weak solution u to the boundary value problem ( * ) is integrable with u θ + L weak q * ( Ω ) for q < n , θ + L weak τ ( Ω ) for q = n and any τ < , θ + L ( Ω ) for q > n , provided that r is sufficiently close to p .

Integral inequalities and summability of solutions of some differential problems

Lucio Boccardo (2000)

Banach Center Publications

The aim of this note is to indicate how inequalities concerning the integral of | u | 2 on the subsets where |u(x)| is greater than k ( k I R + ) can be used in order to prove summability properties of u (joint work with Daniela Giachetti). This method was introduced by Ennio De Giorgi and Guido Stampacchia for the study of the regularity of the solutions of Dirichlet problems. In some joint works with Thierry Gallouet, inequalities concerning the integral of | u | 2 on the subsets where |u(x)| is less than k ( k I R + ) or...

Internal finite element approximation in the dual variational method for the biharmonic problem

Ivan Hlaváček, Michal Křížek (1985)

Aplikace matematiky

A conformal finite element method is investigated for a dual variational formulation of the biharmonic problem with mixed boundary conditions on domains with piecewise smooth curved boundary. Thus in the problem of elastic plate the bending moments are calculated directly. For the construction of finite elements a vector potential is used together with C 0 -elements. The convergence of the method is proved and an algorithm described.

Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries

Ivan Hlaváček, Michal Křížek (1984)

Aplikace matematiky

Using the stream function, some finite element subspaces of divergence-free vector functions, the normal components of which vanish on a part of the piecewise smooth boundary, are constructed. Applying these subspaces, an internal approximation of the dual problem for second order elliptic equations is defined. A convergence of this method is proved without any assumption of a regularity of the solution. For sufficiently smooth solutions an optimal rate of convergence is proved. The internal approximation...

Currently displaying 2081 – 2100 of 5493