Displaying 661 – 680 of 5493

Showing per page

Asymmetric heteroclinic double layers

Michelle Schatzman (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Let W be a non-negative function of class C 3 from 2 to , which vanishes exactly at two points 𝐚 and 𝐛 . Let S 1 ( 𝐚 , 𝐛 ) be the set of functions of a real variable which tend to 𝐚 at - and to 𝐛 at + and whose one dimensional energy E 1 ( v ) = W ( v ) + | v ' | 2 / 2 d x is finite. Assume that there exist two isolated minimizers z + and z - of the energy E 1 over S 1 ( 𝐚 , 𝐛 ) . Under a mild coercivity condition on the potential W and a generic spectral condition on the linearization of the one-dimensional Euler–Lagrange operator at z + and z - , it is possible to prove...

Asymmetric heteroclinic double layers

Michelle Schatzman (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let W be a non-negative function of class C3 from 2 to , which vanishes exactly at two points a and b. Let S1(a, b) be the set of functions of a real variable which tend to a at -∞ and to b at +∞ and whose one dimensional energy E 1 ( v ) = W ( v ) + | v ' | 2 / 2 x is finite. Assume that there exist two isolated minimizers z+ and z- of the energy E1 over S1(a, b). Under a mild coercivity condition on the potential W and a generic spectral condition on the linearization of the one-dimensional Euler–Lagrange operator at z+ and...

Asymptotic analysis and sign-changing bubble towers for Lane–Emden problems

Francesca De Marchis, Isabella Ianni, Filomena Pacella (2015)

Journal of the European Mathematical Society

We consider the semilinear Lane–Emden problem where p > 1 and Ω is a smooth bounded domain of 2 . The aim of the paper is to analyze the asymptotic behavior of sign changing solutions of ( p ) , as p + . Among other results we show, under some symmetry assumptions on Ω , that the positive and negative parts of a family of symmetric solutions concentrate at the same point, as p + , and the limit profile looks like a tower of two bubbles given by a superposition of a regular and a singular solution of the Liouville...

Asymptotic and numerical modelling of flows in fractured porous media

Philippe Angot, Franck Boyer, Florence Hubert (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

This study concerns some asymptotic models used to compute the flow outside and inside fractures in a bidimensional porous medium. The flow is governed by the Darcy law both in the fractures and in the porous matrix with large discontinuities in the permeability tensor. These fractures are supposed to have a small thickness with respect to the macroscopic length scale, so that we can asymptotically reduce them to immersed polygonal fault interfaces and the model finally consists in a coupling between...

Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez (2009)

ESAIM: Control, Optimisation and Calculus of Variations


For a fixed bounded open set Ω N , a sequence of open sets Ω n Ω and a sequence of sets Γ n Ω Ω n , we study the asymptotic behavior of the solution of a nonlinear elliptic system posed on Ω n , satisfying Neumann boundary conditions on Γ n and Dirichlet boundary conditions on  Ω n Γ n . We obtain a representation of the limit problem which is stable by homogenization and we prove that this representation depends on Ω n and Γ n locally.


Currently displaying 661 – 680 of 5493